

PUMPS and ACCESSORIES

ECCENTRIC SCREW PUMPS

The eccentric screw pumps are particularly suited for the transfer of both low and high viscosity fluids, including suspended solids and abrasives.

Thanks to the low pulsation and uniform flow, they are especially good at handling delicate products. With the flowrate proportional to the pump speed, the extensive range can deliver up to 270 m³/h and pressures up to 24 bar, including superb suction performance.

MA

Pumps for sanitary applications are suitable for pumping products with a low to medium viscosity. For simplified maintenance and easier disassembly without disturbing the drive, MA Pumps incorporate a special telescopic construction.

МС

Pumps have an inlet hopper and pre-feed screw, making them ideal for handling highly viscous products. The optional shredder unit produces pureed or ground products from whole or chopped fruit and vegetables ingredients.

MΙ

Industrial series pumps have flanged connections. They are designed for heavy-duty applications, with medium-low viscosity fluids in numerous industrial sectors. The rotating parts are exclusively in stainless steel.

WINEMAKING

A complete range of equipment for the transfer of crushed grapes, marc, must and wine, for pumping, racking, filling and emptying of oak barrels, filtration, cooling and bottling.

MAV

Series, designed for vertical installation with the inlet immersed in the product. It is used for racking, or the emptying drums and containers. Suitable for various products with low to medium viscosity, even for abrasive or corrosive media, with fibres or solids in suspension. Flow rates up to 20 m³/h.

TWIN SCREW PUMPS

The TS twin screw pump represents the Perfect Synergy - High performance combined with compliance with most strict hygienic design requirements.

All parts in product contact are made of AISI 316 and surfaces finishes lower than 0.8 µm, to comply with 3A and EHEDG standards.

HYGIENE BIO

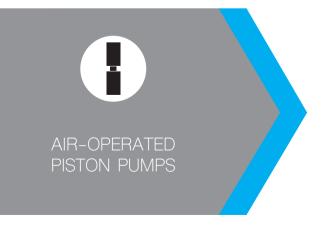
BIOTECHNOLOGY INDUSTRIAL

TS

The TS series pump is suitable for all applications with fluid foods, cosmetics and pharmaceutical products, but ideal for shear sensitive applications. Perfectly suiting delicate viscous media and soft solids, where shear stress must be minimised; the same machine is also perfect for CIP cleaning.

The O.M.A.C. B series lobe pumps are ideal for transferring a multitude of high viscosity products, while meeting the highest hygienic design and compatibility specifications. The range of 17 models provides flow rates from 0.05 to 200 m³/h. The ST version has standard clearances, while SM has increased clearances. Both are available with shafts in AISI 316L stainless steel or duplex. For back pressures up to 20 bar, the HP version includes antifriction stainless steel alloy rotors, with shafts in duplex.

HYGIENE BIOTECHNOLOGY INDUSTRIAL


The sinusoidal rotor pumps are particularly suitable for delicate product transfer without crushing, superb for those viscous and shear sensitive solids.

SN

Thanks to the particular shape of the rotor, low flow pulsation is guaranteed. Allowing linear and consistent product transfer, with minimised foaming. Flow rates up to 100 m³/h and pressure up to 15 bar.

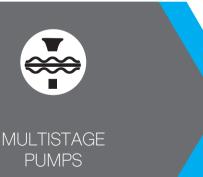
Single or double acting pneumatic pumps, particularly suitable for racking, feeding and transporting high viscosity products, with an easily adjusted flow rate. Thanks to the compressed air driven motor, they are especially suitable for potentially explosive environments and ATEX certified applications. Pressures from 0 to 150 bar with flow rates up to 80 l/min are available.

SINGLE STAGE PUMPS WITH VOLUTE CASING

CS series modular centrifugal pumps are manufactured in a wide range of models. They set the benchmark for process applications in the quality critical dairy and beverage industries, as well as for pharmaceutical and cosmetics production.

CS

High performance centrifugal pumps use an open 6-blade impeller, manufactured specifically for use in the food, pharmaceutical and chemical industries, with flow rates up to 500 m³/h, heads up to 100 m and viscosities up to 700 cP.


The parts in product contact are electro-polished AISI 316L stainless steel. On request special alloys such as Hastelloy, Sanicro 28 and Duplex can be supplied.

The special design allows these pumps to be purchased even with a bare shaft, for subsequent coupling with standard IEC electric motors.

Also available with independent support and a flexible coupling for the pump shaft (CSK series) or in aseptic version (CSD series) with double steam barrier on all sealing points (flanged and pump casing connections) to protect the product from contamination by bacteria and microorganisms. Ideal for feeding and filling applications on aseptic systems for pasteurised or sterile products like milk, dairy and fruit juices.

CR

The unusual shape of the spiral impeller and the volute casing, gives the CR series the unique ability to pump extremely delicate products at a low flow rate. Ideal when uniform product consistency includes the distribution suspended solids particles. It is therefore widely used even in pumping over of wines, aquaculture, in the transfer of fruits and vegetables, meat, poultry, and in brewing.

The single-block multistage centrifugal pumps are designed and manufactured for high pressure duties at medium-low flow rates; thanks to the possibility of mounting several impellers on each shaft.

Vertical versions are also available.

CSM

CSM multistage pumps are made from solid material. They are an evolution of the CS series, with up to four stages. They have flow rates up to 150 m³/h and heads up to 150 m, with a max design pressure of 40 bar.

CV

Multistage centrifugal pumps are closed impeller design, for medium and high heads. In single-block design with closed type impellers, directly supported by the electric motor shaft. Also available as a vertical version (CV-V).

As a non-sanitary, industrial version, they are entirely made of AISI 316 stainless steel and provide flow rates of 40 m³/h max with heads up to 140 m.

Widely used for CIP circuits, filtration, transfers, feeds, racking and water treatment.

CENTRIFUGAL PUMPS WITH CASING FROM ROLLED STAINLESS STEEL

A wide range of single-stage close coupled centrifugal pumps, with casings made from cold rolled AISI 316L stainless steel.

Single-stage sanitary centrifugal pumps, also available as a 3A Certified version.

A range of three models, each with a five-blade open impeller, independent shaft and standard IEC motor. Suitable for standard applications with a maximum flow rate of 70 m³/h and heads up to 60 m. Made with a forged polished casing and investment cast components in AISI 316 stainless steel.

CL/CLC

This low-price series is particularly suited to less arduous use for dairy and beverage production; as well as for pharmaceutical and cosmetic applications.

An investment cast open impeller (CL) or closed impeller (CLC), with a forged pump case and dedicated electric motor.

Peripheral impeller pumps, made of stainless steel AISI 316L, are suitable for transferring clean liquids without abrasives or particles, at low flow rates but with high heads, and without pulsation, in several food and industrial sectors.

CP

Close coupled single-stage pumps handling clean liquids with viscosities up to 250 cP, widely used for dosing liquids, in micro lab systems, in spraying systems and for in-line measuring. They are made of porosity-free AISI 316L stainless steel and electro-polished for an excellent surface finish.

LIQUID RING PUMPS

Self-priming pumps available in both sanitary (AS) and industrial (A) versions, designed for multiple uses, especially for the transport of liquid products.

Series entirely made of AISI 316 stainless steel with flow rates up to 50 m³/h and head of 35 m max. The design of their mounting configuration, means they can also be coupled to hydraulic motors from mounted on trucks for the collection of milk and other liquids.

AS

Single-block sanitary self-priming pumps, manufactured in AISI 316 stainless steel with independent shaft support for coupling to standard IEC motors. Suitable with liquids containing gas and/or air bubbles, which tend to foam or with partially filled intake pipes. They have extensive uses, especially for CIP recovery/return circuits (CIP Scavenge).

EHEDG/3A CERTIFIED PUMPS

Made entirely of AISI 316 stainless steel with high degree of internal polishing. They are designed to meet the highest requirements in the food and pharmaceutical industries. The CSA centrifugal pumps and ASH selfpriming pumps guarantee high levels of efficiency and a high degree of sanitisation and compliance.

CSA

CSA Series derived from CS, with 0.5 µm polished internal finishes and balanced mechanical seal, CSA pumps are certified in accordance with the strict EHEDG (European Hygienic Engineering & Design Group) specifications and American 3A sanitary standards. They are widely used in the food and pharmaceutical industry, where high reliability, sanitary levels and regulation compliance are required.

ASH

Self-priming pumps designed and approved in accordance with the strict American 3A sanitary standards. Thanks to the design features, materials and technologies used, they are a market leading product. Especially in applications where quality is of the highest priority, together with high performance and maximum reliability. Made entirely of AISI 316L stainless steel, with an internal polished finish up to 0.8 µm.

CN

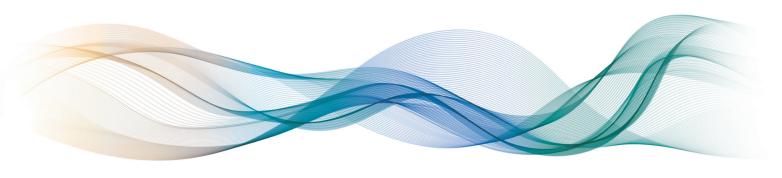
Range of three models with an optimised design to the highest hygiene standards, with no stagnation points for easy cleaning and sanitisation using CIP or SIP processes. They are therefore further enhanced internally with the use of a balanced mechanical seal and supported on adjustable feet, to comply with American 3A standards.

LOBE PUMPS

Designed to meet the highest hygiene sanitary design standards, O.M.A.C. pumps from the C, CF and F series are certified to EHEDG standards; while the BA, BF and C models are approved for compliance with American 3A sanitary standards. All parts in product contact are made of AISI 316L stainless steel with a surface finish Ra up to 0.5 µm. The pump casing is made from investment cast or forged materials, with integral seamless connections.

STEAM/WATER MIXERS

The water/steam mixers, made of AISI 304 stainless steel, are an instant and economical source for the production of low pressure hot water using the normal existing site networks of steam and cold water. Safe, efficient, silent, easy to install and economical, they are suitable for cleaning equipment, tanks, surfaces and machinery. Outlet water temperature adjustable up to 95° C.



GET THE PERFECT FLOW

HEAT EXCHANGERS

MBS tubular and scraped surface heat exchangers for dairy, food, beverage, pharmaceutical and chemical industries.

> Valves by BARDIANI VALVOLE for hygienic applications, 100% made in Italy always combined with a reliable and efficient service.

VALVES

Self-priming Pumps

A Series

Standard design

Self-priming pumps.

The ability to maintain a vacuum under changing suction conditions makes A Series pumps ideally suited for scavenge duties and applications where the inlet pipework is only partially filled, or where the incoming liquid includes entrained air or gas. The construction materials and quick disassembly design make them particularly suitable for a wide variety of applications.

They must be initially filled with liquid for the first start-up; afterwards, a small liquid reservoir remains to enable rapid self-priming to occur even if the suction pipe is emptied.

A 21- A 31: Close-coupled pumps with the impeller directly supported by the electric motor shaft. Easy-opening front cover, by unscrewing three hand-nuts, allows quick inspection without disconnecting the inlet and outlet pipes.

A 41-A 51-A 66-A 81: Close-coupled design with separate IEC motor and flexible coupling. Easy-opening front cover, for quick inspection without disturbing the inlet and outlet pipes.

All CF-8M 1.4408 / AISI 316 Stainless steel parts.

Investment cast, with electro-chemical polishing.

Flow rates up to 50 m 3 /h, heads up to max. 35 m (3,5 bar) (50 Hz).

A 41 - A 51 pump with shroud

A 41 - A 51 pump

Seals:

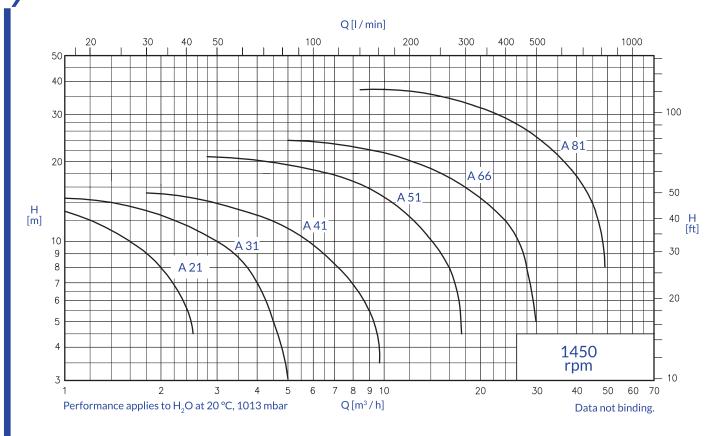
Mechanical seals with seats to EN 12756. ISO 3069 standards.

Single internal mechanical seal Single external mechanical seal

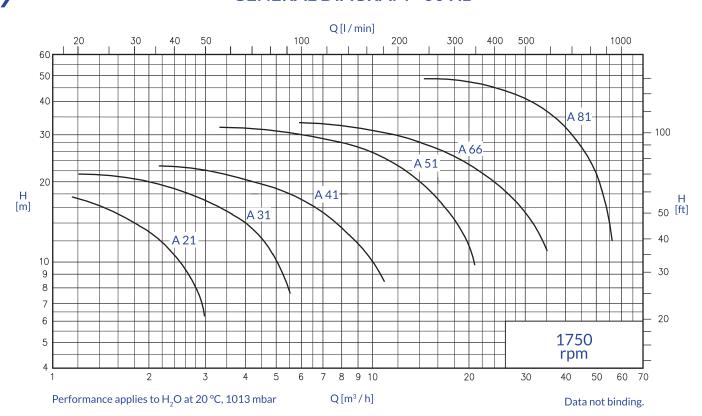
Elastomers (FDA):

PDM

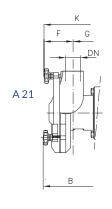
Fluorocarbon (Viton) P.T.F.E. (FEP)

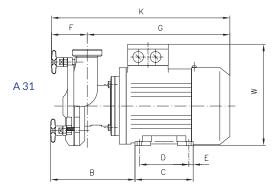

Connections:

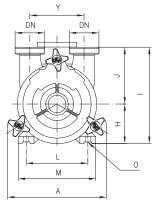
DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN16 flanges to suit most international standards.


Applications

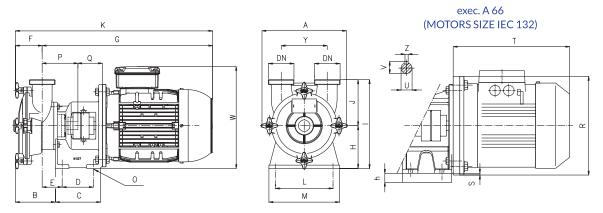
A Series pumps are suitable for a wide range of liquids (CIP solutions, juices, milk, whey, syrups, oil, wine, water, spirits, chemical and pharmaceutical media).

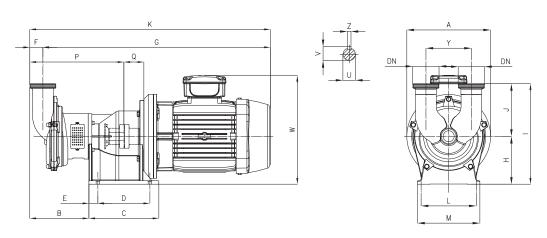

GENERAL DIAGRAM - 50 Hz




GENERAL DIAGRAM - 60 Hz

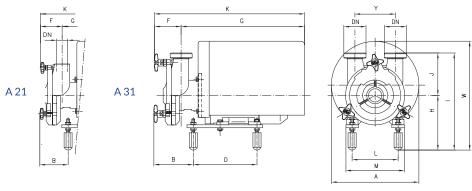
OVERALL DIMENSIONS



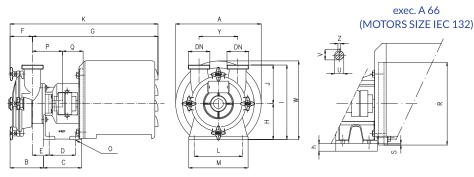

 $\begin{array}{c} \mbox{Dimensions not binding - DN = GAS (BSP female) connection on A21} \\ \mbox{DN = DIN 11851 male threaded connection for A31} \end{array}$

Pumps	نے ا	kW	DN	Α	В	С	D	Ε	F	G	К	Н	J	I	Υ	L	М	0	Р	Q	W
A 21	ud.	0,37	3/4"G	170	149	106	90	8	62	268	330	71	84	155	80	112	132	7	-	-	192
AZI	Ö	0,55	3/4"G	170	152	118	100	9	62	286,5	348,5	80	84	164	80	125	150	9	-	-	210
A 31	145	0,55	32	203	175	118	100	9	75	295,5	370,5	80	117	197	110	125	150	9	-	-	210
A 31		0,75	32	203	175	118	100	9	75	295,5	370,5	80	117	197	110	125	150	9	-	-	210

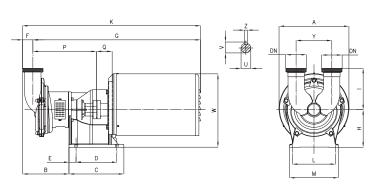
Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors (*) Bearing frame designed for direct coupling with motor frame ...


																		_												
Pump	s		kW	DN	Α	В	С	D	Е	F	G	К	Н	h	J	ı	Υ	L	М	0	Р	Q	R	S	Т	U	٧	w	Z	PAM(*)
A 41		E [1,1	40	250	116	132	89	53,5	79	452	531	122	-	120	242	120	135	175	12	117	54	-	-	-	20	22,5	272	6	90
A41		ď	1,5	40	250	116	132	89	53,5	79	452	531	122	-	120	242	120	135	175	12	117	54	-	-	-	20	22,5	272	6	90
A 51		50	2,2	50	273	127	138	95	59,5	88	499	587	130	-	140	270	140	175	215	12	119	64	-	-	-	20	22,5	290	6	100
ASI		14	4	50	273	127	138	95	59,5	88	521	609	130	-	140	270	140	175	215	12	119	64	-	-	-	20	22,5	284	6	112
A 66			4	65	307	182	150	95	74	133	540	673	145	-	185	330	180	190	230	12	137	65	-	-	-	25	28	299	8	112
A 00			5,5	65	307	182	150	95	74	133	600	732	145	15	185	330	180	190	230	12	137	65	300	5	393	25	28	299	8	132

Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors (*) Bearing frame designed for direct coupling with motor frame ...


Pumps	E	kW	DN	Α	В	С	D	Е	F	G	К	Н	J	1	Υ	L	М	0	Р	Q	U	٧	W	Z	PAM (*)
) L	9,2	80	326	247	292	214	233	55	833	888	200	220	420	190	230	260	14	339	83	32	35	406,5	10	132
A 81	45(11	80	350	247	292	214	233	55	994	1049	200	220	420	190	230	260	14	339	123	32	35	464	10	160
		15	80	350	247	292	214	233	55	994	1049	200	220	420	190	230	260	14	339	123	32	35	464	10	160

OVERALL DIMENSIONS (INCLUDING SHROUD)


 $\label{eq:decomposition} \mbox{Dimensions not binding - DN = GAS (BSP female) connection on A21} \\ \mbox{DN = DIN 11851 male threaded connection for A31}$

Pumps	Ē	kW	DN	Α	В	С	D	Ε	F	G	К	Н	J	ı	Υ	L	М	0	Р	Q	W
A 21	J.	0,55	3/4"G	238	88	-	173	-	62	336	398	153	85	238	80	125	150	-	-	-	301
A 31	450	0,55	32	238	111	-	173	-	75	334	409	153	117	270	110	125	150	-	-	-	301
ASI	4	0,75	32	238	111	-	173	-	75	334	409	153	117	270	110	125	150	-	-	-	301

Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors (*) Bearing frame designed for direct coupling with motor frame ...

Pumps		kW	DN	Α	В	С	D	Е	F	G	К	Н	h	J	ı	Υ	L	М	0	Р	Q	R	S	U	٧	w	Z	PAM (*)
A 41	_	1,1	40	297	116	132	89	53,5	79	549	631	122	-	120	242	120	135	175	12	117	51	-	-	20	22,5	313	6	90
A41	rbu	1,5	40	297	116	132	89	53,5	79	549	631	122	-	120	242	120	135	175	12	117	51	-	-	20	22,5	313	6	90
A 51	50	2,2	50	333	127	138	95	59,5	88	607	704	130	-	140	270	140	175	215	12	119	61	-	-	20	22,5	337	6	100
ADI	14	4	50	333	127	138	95	59,5	88	607	704	130	-	140	270	140	175	215	12	119	61	-	-	20	22,5	337	6	112
A 66		4	65	369	182	150	95	74	133	667	800	145	-	185	330	180	190	230	12	137	62	-	-	25	28	360	8	112
A 00		5,5	65	369	182	150	95	74	133	667	800	145	15	185	330	180	190	230	12	137	62	300	5	25	28	360	8	132

Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors (*) Bearing frame designed for direct coupling with motor frame ...

Pumps	L.	kW	DN	Α	В	С	D	Е	F	G	К	Н	J	ı	Υ	L	М	0	Р	Q	U	٧	w	Z	PAM (*)
) rpr	9,2	80	432	247	292	214	233	55	1036	1090	200	220	420	190	230	260	14	339	83	32	35	434	10	132
A 81	1450	11	80	432	247	292	214	233	55	1036	1090	200	220	420	190	230	260	14	339	123	32	35	475	10	160
		15	80	432	247	292	214	233	55	1036	1090	200	220	420	190	230	260	14	339	123	32	35	475	10	160

C.S.F. Inox S.p.A. Strada per Bibbiano, 7 - 42027 Montecchio E. (RE) - ITALY EU Ph +39.0522.869911 r.a. - Fx +39.0522.865454 - italia@csf.it - www.csf.it

All the instructions, data and representations (in whatever way executed) listed in this publication are indicative and do not binding. C.S.F. does not stand surety or undertake any obligation for the utilisation of this document and for the information contained. In particular, it does not guarantee against omissions or errors of the data and drawings here indicated.

Notice that the technical specifications, information and representations in this document are merely indicative and approximate.

C.S.F. INOX reserves the right at any moment and without notice to modify the data, drawings and information indicated in this document.

Self-priming Sanitary Pumps

AS Series

Standard design

AS series sanitary self-priming pumps.

A close coupled design with independent shaft support and standard IEC motors. The ability of these pump to maintain a vacuum under varying suction conditions, makes them ideal for applications where the incoming liquid contains gas or air, such as vessel scavenging, the handling of foaming liquids or where the suction pipe is only partially flooded. Prior to the first start-up, they must be initially filled with liquid; subsequently, liquid remains in the pump, allowing rapid self-priming to occur, even if the suction pipe is emptied.

The construction materials and the quick disassembly design make the AS series particularly suitable for a wide range of applications.

All CF-3M 1.4404 / AISI 316L stainless steel parts.

Investment cast components with electro-chemical polishing.

Stainless steel adjustable feet.

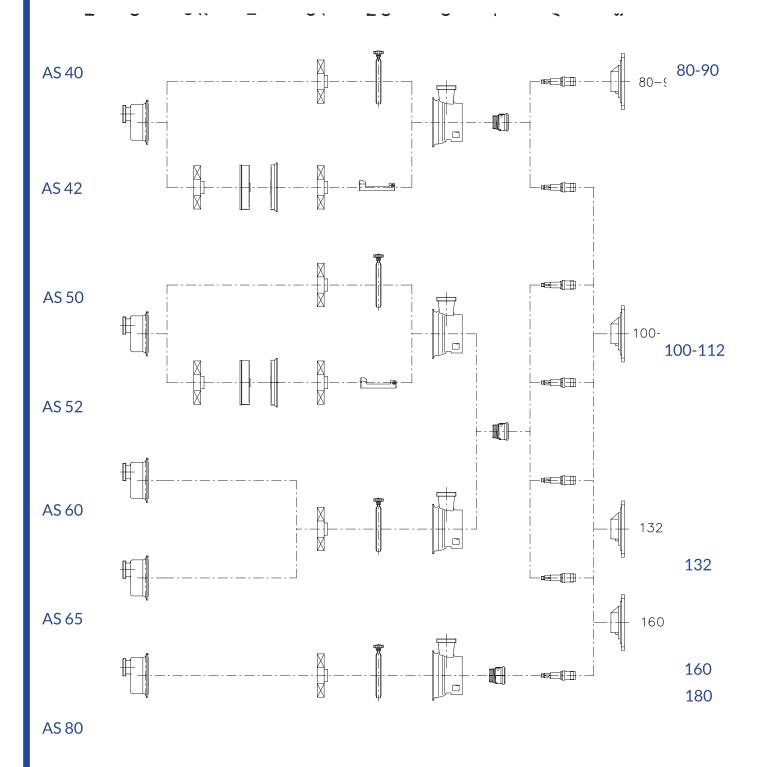
AS 2-stage pump

AS single-stage pump

Seals:

Mechanical seals with seats to EN 12756, ISO 3069 standards.
Single internal mechanical seal Flushed mechanical seal Double flushed mechanical seal

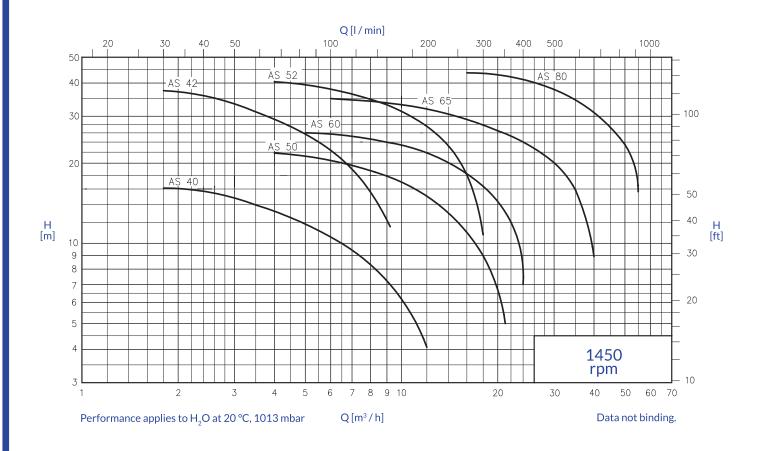
Elastomers (FDA):

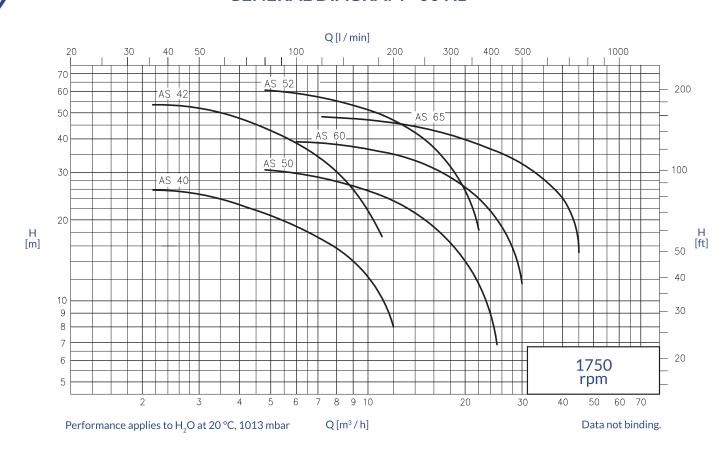

EPDM Fluorocarbon (Viton) Silicone P.T.F.E. (FEP) FFPM

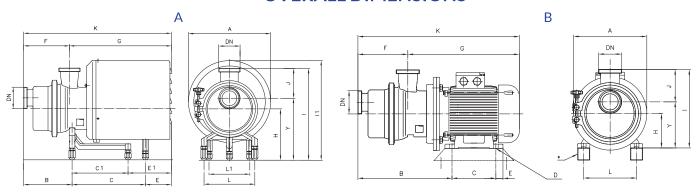
Connections:

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN16 flanges to suit most international standards.

Applications

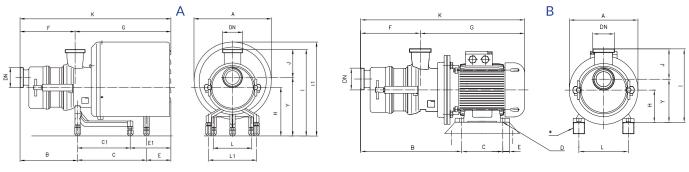

AS series pumps incorporate design features and material technologies that enable them to fulfil a wide range of operational requirements within the food, beverage, dairy, pharmaceutical and chemical industries. They are especially suited for clear low viscosity fluids: CIP solutions, water, juices, wine, spirits, chemicals and pharmaceutical media, in CIP scavenge/return and tank emptying duties.


Star-shaped impellers in CF-3M 1.4404 / AISI 316L stainless steel achieved with micro-casting procedure.


GENERAL DIAGRAM - 50 Hz

GENERAL DIAGRAM - 60 Hz

OVERALL DIMENSIONS


* Motor shims on request

A = with shroud Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pumps		kW	DN	Α	В	С	C1	Е	E1	F	G	К	Н	J	I	I1	Υ	L	L1
		1,1	40	238	167	-	190	-	219	141	435	576	162	110	307	299	197	178	-
AS 40		1,5	40	238	167	-	190	-	219	141	435	576	162	110	307	299	197	178	-
	_	2,2	40	330	167	-	301	-	183	141	510	651	190	110	335	395	225	225	-
AS 50	l d	2,2	50	330	196	-	301	-	202	175	523	697	228	114	378	433	264	225	-
A3 30	ō	4	50	330	196	-	301	-	202	175	523	697	228	114	378	433	264	225	-
AS 60	45	4	65	330	216	-	301	-	202	211	514	719	228	135	408	433	273	225	-
A3 60	, i	5,5	65	370	216	267	-	224	-	211	557	762	228	135	408	450	273	225	180
AS 65]	5,5	65	370	216	267	-	224	-	211	557	762	228	135	408	450	273	225	180
A3 03		7,5	65	370	216	267	-	224	-	211	557	762	228	135	408	450	273	225	180
AS 80		11	80	430	267	375	-	347	-	248	848	1096	228	160	446	491	286	225	230
A3 60		15	80	430	267	375	-	347	-	248	848	1096	228	160	446	491	286	225	230

B = without shroud Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pumps		kW	DN	Α	В	С	øD	Е	F	G	К	Н	J	I	Υ	L	М	N	0
		1,1	40	200	296	100	10	34	141	380	521	90	110	235	125	140	-	-	-
AS 40		1,5	40	200	296	125	10	9	141	380	521	90	110	235	125	140	-	-	-
	_	2,2	40	250	308	140	12	18	141	416	557	100	110	245	135	160	-	-	-
AS 50	l d	2,2	50	250	343	140	12	18	175	419	594	100	114	250	136	160	-	-	-
A3 30	ō	4	50	250	351	140	12	18	175	441	616	112	114	262	148	190	-	-	-
AS 60	45	4	65	250	372	140	12	18	211	431	636	112	135	292	157	190	-	-	-
A3 60	Ť	5,5	65	300	412	140	12	20	211	492	697	132	135	312	177	216	-	-	-
AS 65		5,5	65	300	412	140	12	20	211	492	697	132	135	312	177	216	-	-	-
A3 03		7,5	65	300	412	178	12	20	211	492	697	132	135	312	177	216	-	-	-
AS 80		11	80	350	555	210	15	23	248	677	925	160	160	378	218	254	-	-	-
A5 60		15	80	350	555	254	15	23	248	677	925	160	160	378	218	254	-	-	-

* Motor shims on request

A = with shroud Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pumps	md	kW	DN	Α	В	С	C1	Ε	E1	F	G	К	Н	J	1	I1	Υ	L	L1
AC 42	٥	2,2	40	330	226	-	301	-	183	200	510	710	190	110	335	395	225	225	-
AS 42	45	3	40	330	226	-	301	-	183	200	510	710	190	110	335	395	225	225	-
AS 52	÷	5,5	50	370	258	266	-	280	-	237	567	804	228	114	378	450	264	225	180

B = without shroud Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pumps	md	kW	DN	Α	В	С	øD	Ε	F	G	К	Н	J	I	Υ	L	М	N	0
AC 42	٥	2,2	40	250	365	140	12	18	200	416	616	100	110	245	135	160	-	-	-
AS 42	45	3	40	250	365	140	12	18	200	416	616	100	110	245	135	160	-	-	-
AS 52	1	5,5	50	300	454	140	12	20	237	502	739	132	115	282	168	216	-	-	-

C.S.F. Inox S.p.A. Strada per Bibbiano, 7 - 42027 Montecchio E. (RE) - ITALY EU Ph +39.0522.869911 r.a. - Fx +39.0522.865454 - italia@csf.it - www.csf.it

executed) listed in this publication are indicative and do not binding. C.S.F. does not stand surety or undertake any obligation for the utilisation of this document and for the information contained. In particular, it does not guarantee against omissions or errors of the data and drawings here indicated.

Notice that the technical specifications, information and representations in this document are merely indicative and approximate. C.S.F. INOX reserves the right at any moment and without notice to modify the data, drawings and information indicated in this

Hygienic Centrifugal Pumps

CSA Series

CSA series pumps are designed, tested and approved to EHEDG (European Hygienic Engineering & Design Group) hygiene protocols and to US 3A standards. Used mainly in the foodstuffs and pharmaceutical industries, they fulfil the highest sanitary requirements.

The modular construction enables C.S.F. to provide the most suitable pump. Optimised performance and low NPSH requirements are integral to the design of CSA Series pumps.

Standard design

Open impeller.

Wetted parts in CF-3M 1.4404 / AISI 316L stainless steel, investment cast and electro-chemically polished. Special internal finish to 0,5 micron Ra (for Superduplex 0,8 micron).

Adjustable stainless steel feet.

Flow rates up to 300 m³/h, heads up to 100 m (10 bar); low NPSH requirements.

Sanitary Self-priming Pumps

ASH Series

ASH Series pumps are approved to the latest US 3A sanitary standards; ideal for systems where compliance to the most strict hygiene regulations is essential.

The ability of ASH pumps to repeatedly create a vacuum makes them ideal for applications where air or gas is entrained in the pumped liquid. Perfect for CIP scavenge and duties where the inlet pipework is only partially filed with fluid, including foaming products.

Manufactured for a wide range of requirements in the food, beverage and pharmaceutical process sector. This market leading design includes the latest technologies and construction materials.

Standard design

Wetted parts in CF-3M 1.4404 / AISI 316L stainless steel.

Investment cast and electro-chemically polished.

Special internal finish 0,8 micron Ra.

Adjustable stainless steel feet.

Flow rates up to 40 m 3 /h, heads up max. 35 m (3,5 bar) (50 Hz).

CSA series

Closed coupled sanitary centrifugal pumps with open impeller and independent shaft support.

Suitable for motors in compliance with the following standards: IEC 34-1, VDE 0530T1, NF C51-111, BS5000 PART 99, NEMA NG1 PART. 1

Greased lubricated bearings.

Clamp design casing and seal. Easy disassembly, quick inspection, cleaning and maintenance. Rotation of the delivery port for optimised installation

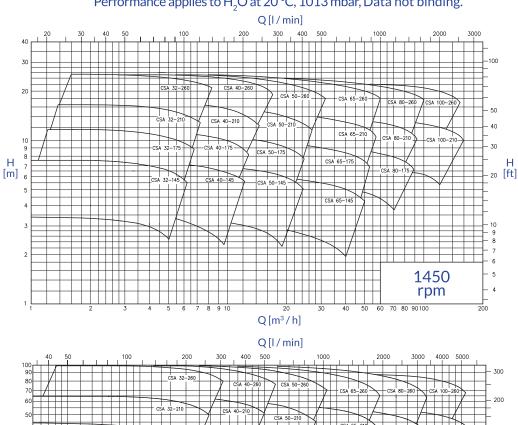
CSA SERIES CERTIFIED TO EHEDG / 3A

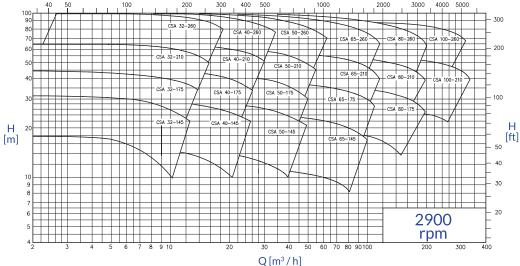
Seals:

Protected and balanced internal mechanical seal with seats according to EN 12756, ISO 3069 standards. Single external mechanical seal

Double flushed (axial + radial) mechanical seal

Elastomers (FDA - 3A - USP VI): **EPDM**


FLUOROCARBON - (FPM DIN/ISO), (FKM ASTM) **PFFPM**



Connections: CLAMP DIN 32676-C **DIN 11864**

GENERAL DIAGRAMS

Performance applies to H₂O at 20 °C, 1013 mbar, Data not binding.

ASH Series

Close coupled sanitary self-priming pumps with independent shaft support.

Suitable for motors in compliance with the following standards: IEC 34-1, VDE 0530T1, NF C51-111, BS5000 PART 99, NEMA NG1 PART. 1

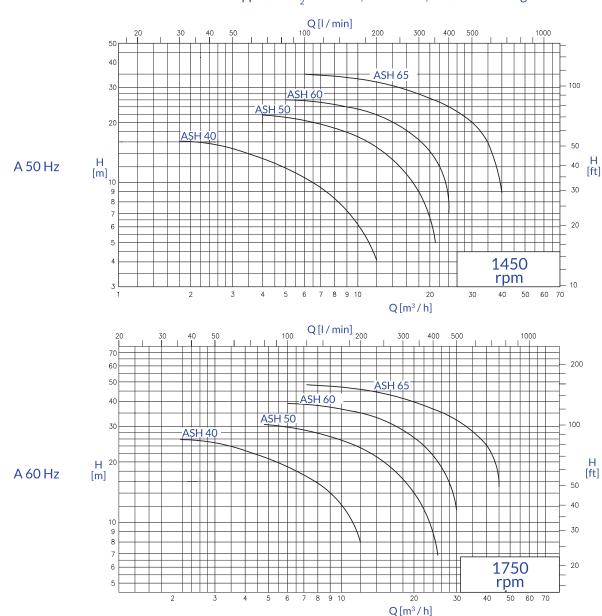
Greased lubricated bearings.

Clamp design casing and seal. Easy disassembly, quick inspection, cleaning and maintenance.

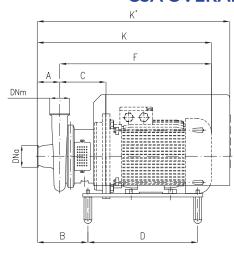
Seals:

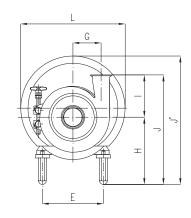
Single internal mechanical seal, protected and balanced, with seats according to EN 12756, ISO 3069.

Elastomers (FDA - 3A - USP VI): EPDM FLUOROCARBON - (FPM DIN/ISO), (FKM ASTM) P.T.F.E. (FEP) FFPM


Connections:

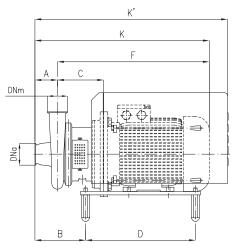
CLAMP DIN 32676-C DIN 11864

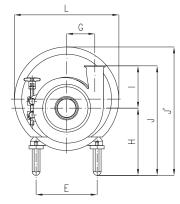



GENERAL DIAGRAMS

Performance applies to H₂O at 20 °C, 1013 mbar, Data not binding.

CSA OVERALL DIMENSIONS

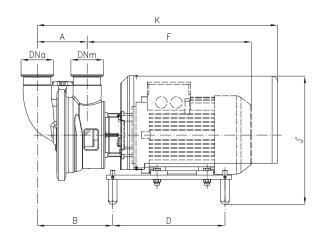


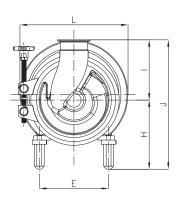


Dimensions not binding - DN = "Clamp" DIN 32676-C connections, with standard IEC/EN motors

C5A 32-145 Fig. C5A 32-146 Fig.	Pumps	IEC mo- tors size:	DNa	DNm	Α	В	С	D	Е	F	G	Н	К	K'	ı	J	J,	L
CSA 32-175 100	001.00.445		4 11 4 (0	4114 (0	00		138	254						566	4.40			298
CSA 32-175 Fig. CSA 32-176 Fig. Fig. CSA 32-176 Fig. CSA 32-176 Fig.	CSA 32-145		1"1/2	1"1/2	80	158	139	314			85	240	531	637	148	388		330
100 11/2 1		80				167	139	254	125	373		220	453	567		368	384	298
C5A 32-240	CSA 32-175	100	1"1/2	1"1/2	80	159	140	314	160	452	95	240	532	637	148	388	445	330
CSA 32-210 112		80				167	139	254	125	373			453	567				298
132 132 132 132 141	CSA 32-210	100	1"1/2	1"1/2	80	159	140	314	160	452	110		532	637	168			330
160	03/1 02 210	132 S	1 1/2	1 1/2	00		161	389		534	110		614		100			370
Part			1			241	206	460	254			280			1	448	543	430
Table Tabl																		
CSA 40-145 CSA 40-145 CSA 40-145 CSA 40-146		100				193	1/1	24.4	160	476			566	/74	1		475	220
132 132	CCA 22 240	112	2"	1"1/0	00	200	104	314	190	497	140	260	587		1/0	428	465	330
150 160	C3A 32-200	132 S		1 1/2	90	211	105	200	216		140				100		102	270
CSA 40-145 PO		132 M					103	307		602			693	769			402	3/0
CSA 40-145 90							225	460						967			543	430
110	CCA 40 14E		0"	o"	00		139	254			00			567	100			298
CSA 40-175 112 2" 2" 2" 2" 4" 4" 5" 4" 5" 4" 4" 4	C3A 40-143				80		140	314			70			637	133			330
CSA 40-175 110							4.44	054						- · · ·				200
CSA 40-175 112 2" 2" 80 161 162 162 314 314 314 316 454 537 581 320 555 617 682 661 737 370			1				141	254			1			569				298
CSA 40-175 112 132 132 132 132 133 140 164 180 180		100	1			161	4.40	044	160		1		534		1	390	445	000
132 M 160	CSA 40-175	112	2"	2"	80		142	314	190		95	230	555	639	150		435	330
160 160 80 80 90 160 170 1]			180	164	389	216			255]	405	477	370
CSA 40-210 100 112 132 S 132 M 160 160 160 112 132 M 160 132 S 132 M 160 180 1			1			243	208	460	254		1	280			1	430	543	430
CSA 40-210 112 132 132 132 132 132 132 132 134 160 475 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 150 141 142 141 160 142 140							141	254				235		569		395	399	298
CSA 40-210			1									240			1	400	445	
132 S 132 M 160 160 243 208 460 254 686 250 661 737 260 270	CSA 40-210		2"	2"	80		142	314			115			639	160	-		330
160		132 S					164	389		537			617			410	472	370
Part			-			243	208	460	254		-	280			1	440	543	430
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
CSA 40-260 132 S 132 M 160 221 185 389 216 602 602 702 779 785 702 779 779 785 702 779 785 708 7		100					164	314				260		681		432	465	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CSA 40-260		2"	2"	100		185	389	216		145				172		482	370
180 195 600 279 785 305 885 1094 477 637 420						280	225	460	254			280			1	452	502	430
CSA 50-145 $\begin{bmatrix} 90 \\ 100 \\ 112 \end{bmatrix}$ $\begin{bmatrix} 2"1/2 \\ 2" \end{bmatrix}$ $\begin{bmatrix} 2" \\ 80 \end{bmatrix}$ $\begin{bmatrix} 161 \\ 168 \\ 168 \end{bmatrix}$ $\begin{bmatrix} 141 \\ 254 \\ 160 \end{bmatrix}$ $\begin{bmatrix} 140 \\ 422 \\ 190 \\ 475 \end{bmatrix}$ $\begin{bmatrix} 230 \\ 502 \\ 240 \\ 534 \\ 230 \end{bmatrix}$ $\begin{bmatrix} 569 \\ 39 \\ 405 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 394 \\ 379 \\ 445 \\ 300 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 394 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 394 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 394 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \\ 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 369 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 390 \\ 390 \end{bmatrix}$ $\begin{bmatrix} 39$		180	1			195	225	600	279	785	1	305	885	1094	1	477	637	420
CSA 50-145 100 2"1/2 2" 80 161 142 314 160 454 170 475 132 134		80				169	1.11	254	125	374		220	454	540		359	384	200
112 168 142 314 190 475 230 555 639 369 435 330 132 S 132 S 180 164 389 216 537 255 617 682 394 477 370 141 254 140 422 140 422 140 534 140 140 140 140 140 140 140 140 140 14			1			175	141	234						307	1			270
112 168 190 475 230 555 369 435 370	CSA 50-145		2"1/2	2"	80		142	314			95			639	139			330
80 90 100 112 132 S 132 M 2"1/2 2" 80															-			
CSA 50-175 112 2"1/2 2" 80 164 389 216 537 581 255 616 682 661 737 370 384 394 298 394 298 394 298 394 298 394 298 394 298 394 298 394			-				164	389				255		682	-	394	477	370
CSA 50-175 112 2"1/2 2" 80 168 142 314 190 475 100 230 555 639 154 384 435 330 180 180 164 389 216 537 581 255 661 737							141	254	140	422			502	569			394	298
132 S 132 M 180 164 389 216 537 581 255 616 682 661 737 409 477 370	CSA 50-175		2"1/2	2"	80		142	314			100	_		639	154	-		330
		132 S					164	389		537			616					370
		160				243	208	460	254	686		280	766	937		434	543	430

CSA OVERALL DIMENSIONS





 $Dimensions \ not \ binding \ - \ DN = "Clamp" \ DIN \ 32676 - C \ connections, with \ standard \ IEC/EN \ motors$

Pumps	IEC mo- tors size:	DNa	DNm	Α	В	С	D	Е	F	G	Н	К	K'	I	J	J'	L
	90				175	141	254	140	422			502	569			412	298
	100				161	142	314	160	454		240	534	639		408	445	330
	112				168	142	314	190	475			555	037			443	330
CSA 50-210	132 S	2"1/2	2"	80	180	164	389	216	537	120	250	617	682	168	418	472	370
	132 M						307		581			661	737		410	4/2	370
	160				243	208	460	254	686		280	766	937		448	543	430
	180				173	223	600	279	783		305	863	1072		473	637	420
	100				194	165	314	160	477		270	567	672		449	475	330
CSA 50-260	112	2"1/2	2"	90	201	103	314	190	498	145		588		179			
C3A 30 200	160	2 1/2		/0	273	228	460	254	706	173	280	796	970	1//	459	543	430
	180				188	220	600	279	788		305	878	1087		484	637	420
	80				172	145	254	125	379			458	572			409	298
	90				178	143	234	140	426		245	505	372		383	107	270
	100				164	146	314	160	458		243	537	642		303	450	330
CSA 65-145	112	3"	3"	79	171	140	314	190	479	112		558	072	138		730	330
	132 S				183	168	389	216	541		255	620	685		393	477	370
	132 M				103		307	210	585		233	664	740		3/3	7//	370
	160				246	212	460	254	690		280	769	940		418	543	430
	90				178	144	254	140	425			505	572			409	298
	100				164	145	314	160	457			537	642			460	330
	112				171	143	314	190	478		255	558			393	100	330
CSA 65-175	132 S	3"	3"	80	183	167	389	216	540	120		620	685	138		477	370
	132 M					107	367		584			664	740				
	160				246	211	460	254	689		280	769	940		418	543	430
	180				174	224	600	279	784		305	864	1073		443	637	420
	90				212	168	254	140	449			539	605			429	298
	100				198	169	314	160	481		265	571	676		423	470	330
CSA 65-210	112	3"	3"	90	205	109	314	190	502	135		592	0/0	158		4/0	330
	160				276	231	460	254	709		280	799	974		438	543	430
	180				191	231	600	279	791		305	881	1090		463	637	420
	100				207	168	314	160	480			580	685			490	330
	112				214	100	314	190	501			601	003			490	330
CCA 45 240	132 S	3"	3"	100	226	190	389	216	563	155	285	663	728	193	478	507	370
CSA 65-260	132 M	3	3	100	226	190	389	216	607	122		707	783	193		507	3/0
	160				285	230	460	254	708			808	983			548	430
	180				200	230	600	279	790		305	890	1099		498	637	420
	100				231	174	315	160	486			586	691			400	220
	112]			220	1/4	315	190	507		275	607	091		439	480	330
CSA 80-175	132 S	4"	3"	100	231	195	389	216	568	139		668	734	164		497	370
	160				291	236	460	254	714		280	814	989		444	543	430
	180				206	236	600	279	796		305	896	1105		469	637	420
	100				210	171	314	160	483			583	688			490	220
	112				217	1/1		190	504		205	604	088		449	490	330
CSA 80-210	132 S	4"	3"	100	229	193	389	216	566	145	285	666	731	164	449	507	370
	160	1			288	222	460	254	711			811	986			548	430
	180	1			203	233	600	279	793		305	893	1102		469	637	420
	100				210	171	24.4	160	483			583	400			FOE	220
	112]			217	171	314	190	504			604	688			505	330
CSA 80-260	132 S	4"	3"	100		100	200		566	165	300	666	731	209	509	E22	270
	132 M]			229	193	389	216	610			710	786			522	370
	160]			288	233	460	254	711			811	986			563	430
CSA 100-	132 S	r"	4"	111	246	200	389	216	573	1/1	205	683	750	24.4	F40	527	370
210	180	5"	4"	111	221	240	600	279	800	161	305	911	1120	214	519	634	420
	132 M				246	195	389	216	612			727	803			547	370
CSA 100-	160	5"	4"	115	305	235	460	254	713	186	325	828	1004	216	541	588	430
260																	

ASH OVERALL DIMENSIONS

Dimensions not binding - DN = "Clamp" DIN 32676-C connections, with standard IEC/EN motors

					_										
Pumps		kW	DNa	DNm	Α	В	D	Е	F	Н	K	1	J	J,	L
]	1,1				183	245	140	410	228	551		376	376	239
ASH 40	E	1,5 2,2	1" 1/2	1" 1/2	90,5	148,5	314	160	433	238	617	139	386,5	403	330
ASH 50	린	2,2	2"	2"	118	176,5	314	160	432	238	645	149	386,5	403	330
ASH 30	20	4	2		110	183,5	314	190	453	250	045	149	398,5	415	330
ASH 60	14!	4	3"	3"	139	211	314	190	460	250	672	169	418,5	415	330
A3H 60] ``	5,5	3	3	139	215	390	216	512	270	749	109	438,5	489	372
		5,5				215	390	216	512	270	749		438,5	489	372
ASH 65		7,5 15	3"	3"	139	266	460	254	650	280	914	169	448,5	536	432

<u>CSF</u>

Centrifugal Sanitary Pumps

CL-CLC Series

Standard design

Available in a wide range of models with closed or open impellers and 2 or 4 pole motors, this well-established series of hygienic pumps can perform an amazing number of applications. The special construction with hand-nuts & clamps allows easy disassembly for inspection and cleaning of the internal components

Wetted parts are in forged polished plate and investment cast electropolished AISI 316 stainless steel.

Flow rates up to 90 m³/h, heads up to max. 50 m. (5 bar).

CL-CLC pump with shroud

Closed

Closed in 2 pieces

Open

All impellers, both closed and open, have reversed blades, designed to optimize the hydraulic efficiency.

CL-CLC pump

Seals:

Mechanical seals with seats to EN 12756, ISO 3069 standards.

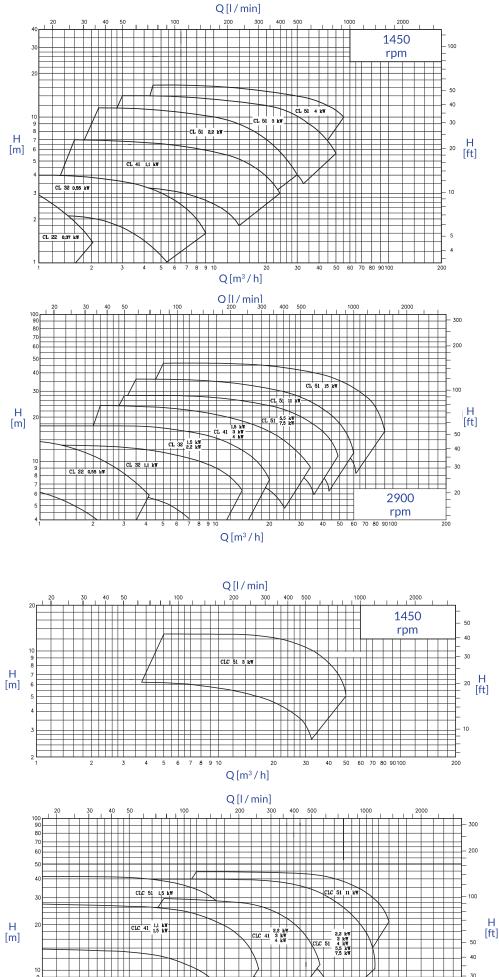
Single internal mechanical seal Single external mechanical seal Double flushed mechanical seal

Elastomers (FDA):

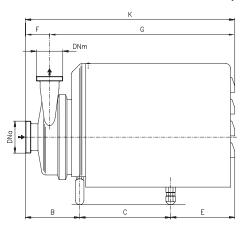
EPDM Fluorocarbon (Viton) Silicone P.T.F.E. (FEP)

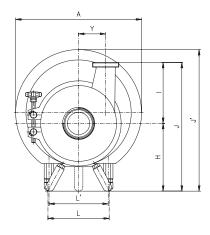
Connections:

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN16 flanges suitable for most international standards.


Applications

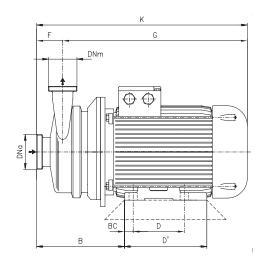
Food processing, dairy, beverage, chemical, cosmetics and pharmaceutical industries. With an open impeller, juices, creams, ice-cream mix, milk, wine, spirits and whey, can be safely transferred at low pressure. While with a higher efficiency closed impeller, clean liquids without solids can be pumped at medium-high heads (max. 40-50 m) to feed pasteurizers and coolers, concentrators, filters, CIP systems, etc.

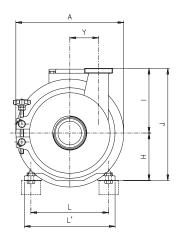

OPEN IMPELLER CL GENERAL DIAGRAM


Performance applies to H_2O at 20 °C, 1013 mbar, Data not binding.

Performance applies to H_2O at 20 °C, 1013 mbar, Data not binding.

OVERALL DIMENSIONS (INCLUDING SHROUD)


Dimensions not binding - DN = DIN 11851 male threaded connections


Pumps	rpm	kW	DNa	DNm	Α	В	С	Е	F	G	K	Н	I	J	J'	L	Ľ	Υ
CL 22/.P	1450	0,37	25	25	212	165	90	138	52	340	392	71	95	166	205	112	136	0
CL 22/.P	2900	0,55	25	25	212	165	90	138	52	340	392	71	95	166	205	112	136	0
CL 22/.P	2900	0,75	25	25	212	172,5	100	122,5	45	340	392	80	95	175	214	125	155	0

P	umps		kW	DNa	DNm	Α	В	С	Е	F	G	К	Н	ı	J	J,	L	Ľ	Υ
CL	32/.P	_	0,55	40	40	239	120	195	177	51	437,5	479,5	155	125	280	305,8	200	-	40
CL	41/.P	Щd	1,1	50	40	298	159	168	180	62	445	507	160	150	310	324	190	-	60
		ō	2,2	65	50	298	154	188	219	66	495	561	165	180	375	359	180	-	80
CL	51/.P	45	3	65	50	298	173	188	219	72	508	580	195	180	375	359	180	-	80
		₹	4	80	65	298	177	195	212	76	508	584	195	200	395	359	180	-	70
CLC	51/.P		3	80	65	298	177	188	219	76	508	584	195	200	395	359	180	-	70
CLC	. 31/.P		4	80	65	298	177	188	219	76	508	584	195	200	395	359	180	_	70

		1,1	32	32	239		205	177	51			155	125	280		200	-	40
CL 32/.P		1,5	32	32	239	120	205	177	51	437,5	479,6	155	125	280	305,8	200	-	40
		2,2	40	40	239		235	133	51			155	125	280		200	_	40
		1,5	40	32	298	143	192	152	56	431	487	160	150	310	330	190	-	60
CL 41/.P		3	50	40	298	143	217	192	56	496	552	160	150	310	324	168	-	60
		4	50	40	298	143	224	185	56	496	552	160	150	310	324	168	_	60
		5,5	65	50	368	147	228	232	66	541	607	200	180	380	416	178	115	80
CL 51/.P		7,5	65	50	368	147	228	232	66	541	607	200	180	380	416	178	115	80
CL 51/.P		11	65	50	368	147	211	249	66	541	607	200	180	380	416	178	185	80
	٦	15	80	65	368	170	211	249	74	541	615	200	200	400	416	178	185	70
	rpm	1,1	40	32	298	142	162	186	56	434	490	160	150	310	324	190	-	60
	2900	1,5	40	32	298	142	168	180	56	434	490	160	150	310	324	190	-	60
CLC 41/.P	29	2,2	50	40	298	142	193	155	62	434	490	160	150	310	324	190	-	60
		3	50	40	298	151	217	192	62	498	560	160	150	310	324	168	-	60
		4	50	40	298	151	224	185	62	498	560	160	150	310	324	168	_	60
]	1,5	25	25	298	127	165	180	52	420	472	165	160	325	329	152	-	80
		2,2	32	32	298	137	165	180	61	420	481	165	160	325	329	152	-	80
		3	50	40	298	150	188	220	63	495	558	195	160	355	359	180	-	80
CLC 51/.P		4	50	50	298	161	195	212	66	501	567	195	180	375	359	180	-	80
		5,5	65	50	368	157	228	231	69	547	616	200	180	380	416	178	115	80
		7.5	65	50	368	157	228	231	69	547	616	200	180	380	416	178	115	80
		11	65	65	368	162	211	253	74	552	626	200	200	400	416	178	185	70

OVERALL DIMENSIONS

Dimensions not binding - DN = DIN 11851 male threaded connections

							_											
Pumps	rpm	kW	DNa	DNm	ØΑ	В	BC	D	D'	F	G	K	Н	I	J	L	Ľ	Υ
CL 22	1450	0,37	25	25	141	155	10	90	110	52	278	330	71	95	166	112	136	0
CL 22	2900	0,55	25	25	141	155	10	90	110	52	278	330	71	95	166	112	136	0
CL 22	2900	0,75	25	25	141	160	12,5	110	125	52	298	350	80	95	175	125	155	0

Pumps		kW	DNa	DNm	ØΑ	В	ВС	D	D'	F	G	К	Н	I	J	L	Ľ	Υ
CL 32		0,55	40	40	155	168	12,5	100	118	51	314	365	80	125	205	125	150	40
CL 41	E	1,1	50	40	200	212	15	100	143	62	391	453	90	150	240	140	165	60
	0	2,2	65	50	254	211	20	140	176	66	415	481	100	180	280	160	196	80
CL 51	12(3	65	50	254	230	20	140	176	72	428	500	100	180	280	160	196	80
	.	4	80	65	254	241	20	140	176	76	449	525	112	200	312	190	226	70
CLC 51		3	80	65	254	241	18	140	176	76	428	504	100	200	300	160	196	70
CLC 51		4	80	65	254	243	18	140	176	76	449	525	112	200	312	190	226	70

		1,1	32	32	155	168	12,5	100	118	51	314	365	80	125	205	125	150	40
32		1,5	32	32	155	172	15	100	143	51	362	413	90	125	215	140	165	40
		2.2	40	40	155	172	15	125	143	51	362	413	90	125	215	140	165	40
			40	32	200	195	15		143	56	380	436	90		240	140		60
41		3	50	40	250	199	20	140	176	56	413	469	100	150	250	160	196	60
		4	50	40	250	206	20	140	176	56		l			l	190		60
		5.5	65	50	300	230	24	140	176	68	472	540	132	180	312	216	256	80
F4		7,5	65	50	300	230	24	140	176	68	472	540	132	180	312	216	256	80
51		11	65	50	300	241	20	178	220	66	536	602	132	180	312	216	260	80
	٤	15	80	65	300	249	20	178	220	74	536	610	132	200	432	216	260	70
	ם	1,1	40	32	200	191	12,5	100	118	56	332	388	80	150	230	125	150	60
	8	1,5	40	32	200	195	15	100	143	56	380	436	90	150	240	140	165	60
41	53	2,2	50	40	200	195	15	125	143	62	380	436	90	150	240	140	165	60
		3	50	40	250	207	20	140	176	62	415	477	100	150	250	160	196	60
		4	50	40	250	214	20	140	176	62	436	498	112	150	262	190	226	60
		1,5	25	25	254	181	15	100	143	52	370	422	90	160	250	140	165	80
		2,2	32	32	254	191	15	125	143	61	370	431	90	160	250	140	165	80
		3	50	40	254	207	20	140	176	63	415	478	100	160	260	160	196	80
51		4	50	50	254	224	20	140	176	66	442	508	112	180	272	190	226	80
		5.5	65	50	300	241	24	140	180	72	478	550	132	180	312	216	256	80
			65	50	300	241	24	140	180	72	478	550	132	180	312	216	256	80
		11	65	65	300		20		220	74								70
	41 51 41	41 Ed. 10067	32	32	32 41 41 41 41 41 41 41 41 41 41 41 41 41	32 41 41 41 41 41 41 41 41 41 41 41 41 41	32 41 41 41 41 41 41 41 41 41 41 41 41 41	32	32 41 51 52 40 40 40 155 172 15 100 2,2 40 40 155 172 15 125 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 155 172 15 100 140 155 172 15 100 140 155 172 15 100 140 155 172 15 100 140 140 155 150 300 175 175 175 175 175 175 175 175 175 175	32	32 41 51 2,2 40 40 155 172 15 100 143 51 1,5 40 32 200 195 15 100 143 56 41 3 50 40 250 199 20 140 176 56 4 50 300 230 24 140 176 68 7,5 65 50 300 230 24 140 176 68 11 65 50 300 249 20 178 220 66 15 80 65 300 249 20 178 220 74 1,1 40 32 200 195 15 100 118 56 1,5 40 32 200 191 12,5 100 118 56 1,5 40 32 200 191 12,5 100 118 56 1,5 40 32 200 195 15 100 143 56 1,5 40 32 200 191 12,5 100 118 56 1,5 40 32 200 195 15 100 143 56 1,5 40 32 200 195 15 100 143 56 1,5 25 25 25 254 181 15 100 143 52 2,2 32 32 32 254 191 15 125 143 62 3 50 40 250 207 20 140 176 62 1,5 25 25 254 181 15 100 143 52 2,2 32 32 32 254 191 15 125 143 61 3 50 40 250 214 20 140 176 63 51 4 50 50 254 224 20 140 176 63 51 4 50 50 254 224 20 140 176 63 55,5 65 50 300 241 24 140 180 72	32 1,5 32 32 155 172 15 100 143 51 362 41 2,2 40 40 155 172 15 125 143 51 362 41 1,5 40 32 200 195 15 100 143 56 380 41 50 40 250 199 20 140 176 56 413 4 50 40 250 206 20 140 176 56 434 5,5 65 50 300 230 24 140 176 68 472 7,5 65 50 300 230 24 140 176 68 472 11 65 50 300 230 24 140 176 68 472 11 65 50 300 249 20 178 220 74<	32 41 51 52 40 40 40 155 172 15 100 143 51 362 413 364 413 1,5 40 32 200 195 15 100 143 51 362 413 364 413 369 436 436 43 3 50 40 250 199 20 140 176 56 434 490 5,5 65 50 300 230 24 140 176 68 472 540 11 65 50 300 230 24 140 176 68 472 540 11 65 50 300 230 24 140 176 68 472 540 11 65 50 300 230 24 140 176 68 472 540 11 65 50 300 230 24 140 176 68 472 540 11 65 50 300 230 24 140 176 68 472 540 11 65 50 300 249 20 178 220 74 536 610 1,1 40 32 200 191 12,5 100 118 56 332 388 436 436 436 436 436 437 450 40 250 200 191 12,5 100 118 56 332 388 436 436 436 436 436 436 437 450 40 250 207 20 140 176 62 436 436 498 1,5 2,2 32 32 254 181 15 100 143 52 370 422 2,2 32 32 254 191 15 125 143 61 370 431 3 50 40 254 207 20 140 176 66 442 508 55 56 50 300 241 24 140 176 66 442 508 55 7,5 65 50 300 241 24 140 176 66 442 508 55 7,5 65 50 300 241 24 140 176 66 442 508 55 7,5 65 50 300 241 24 140 180 72 478 550	1,5 32 32 155 172 15 100 143 51 362 413 90	1,5 32 32 155 172 15 100 143 51 362 413 90 125	1,5 32 32 155 172 15 100 143 51 362 413 90 125 215	1,5 32 32 155 172 15 100 143 51 362 413 90 125 215 140	1,5 32 32 155 172 15 100 143 51 362 413 90 125 215 140 165 2,2 40 40 155 172 15 125 143 51 362 413 90 125 215 140 165 1,5 40 32 200 195 15 100 143 56 380 436 90 150 240 140 165 3 50 40 250 199 20 140 176 56 413 469 100 150 250 160 196 4 50 40 250 206 20 140 176 56 413 469 100 150 250 160 196 5,5 65 50 300 230 24 140 176 68 472 540 132 180 312 216 256 7,5 65 50 300 230 24 140 176 68 472 540 132 180 312 216 256 11 65 50 300 241 20 178 220 66 536 602 132 180 312 216 256 11 65 50 300 249 20 178 220 66 536 602 132 180 312 216 256 15 80 65 300 249 20 178 220 74 536 610 132 200 432 216 260 15 80 65 300 249 20 178 220 74 536 610 132 200 432 216 260 1,1 40 32 200 195 15 100 118 56 332 388 80 150 230 125 150 1,5 40 32 200 195 15 125 143 56 380 436 90 150 240 140 165 2,2 50 40 250 207 20 140 176 62 415 477 100 150 250 160 196 4 50 40 250 214 20 140 176 62 436 498 112 150 262 190 226 51 1,5 25 25 254 181 15 100 143 52 370 422 90 160 250 140 165 3 50 40 250 254 207 20 140 176 66 442 508 112 180 272 190 226 51 4 50 50 50 300 241 24 140 180 72 478 550 132 180 312 216 256 52 56 50 300 241 24 140 180 72 478 550 132 180 312 216 256 53 56 50 300 241 24 140 180 72 478 550 132 180 312 216 256 54 57 565 50 300 241 24 140 180 72 478 550 132 180 312 216 256 54 57 565 50 300 241 24 140 180 72 478 550

Centrifugal Pumps

CN Series

Standard design

Closed coupled single-stage centrifugal pumps. A range of 3 models with open impellers, independent shafts and IEC standard motors.

Optimised design to ensure high levels of hygiene - The absence of product hold-up and no dead-legs ensures efficient cleaning by standard CIP methods and effective sterilsation by SIP.

Wetted parts are in pressed polished plate and investment cast electropolished CF3M 1.4409 / AISI 316L (1.4404) stainless steel.

Investment cast and electro-chemical polishing. Internal finishes of 0,5 micron Ra are available on request..

Flow rates up to 75 m³/h, heads of more than 60 m. Maximum inlet pressure: 4 bar. Temperature range: -10°C to 120°C.

HYGIENE BIOTECHNOLOGY INDUSTR

Pump with shroud and stainless steel adjustable feet.

Pump without shroud and stainless steel motor shims.

Open impeller with reversed blades with vast expansion designed to optimize the hydraulic efficiency.

Seals:

Hygienic mechanical seals with seats to EN 12756, ISO 3069 standards.

Elastomers (US FDA):

EPDM

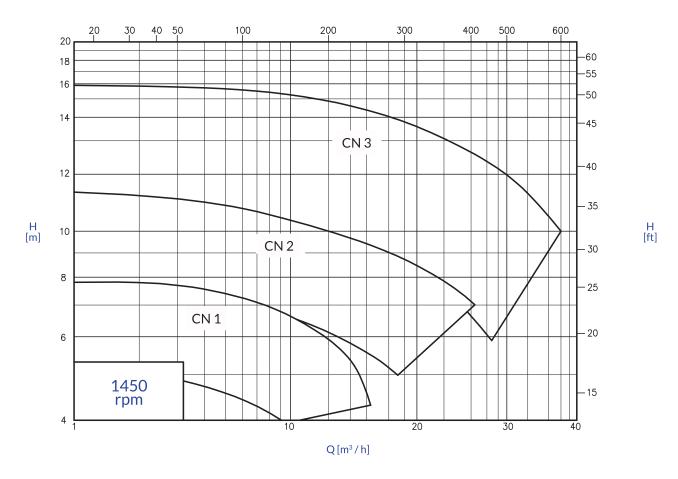
Fluorocarbon (Viton)

Silicone

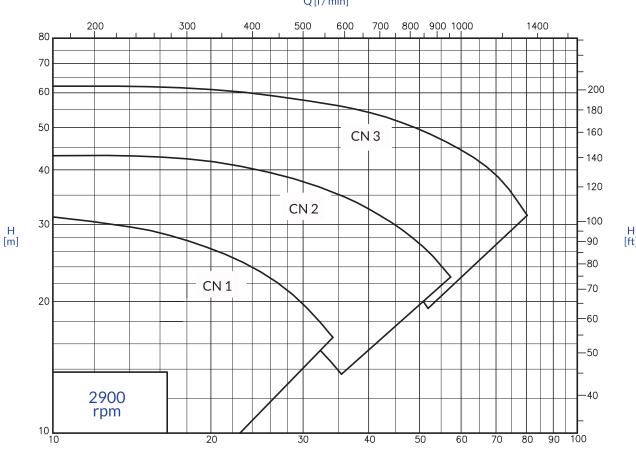
P.T.F.E. (FEP)

Connections:

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN16 flanges and on request available for other international standards.


Applications

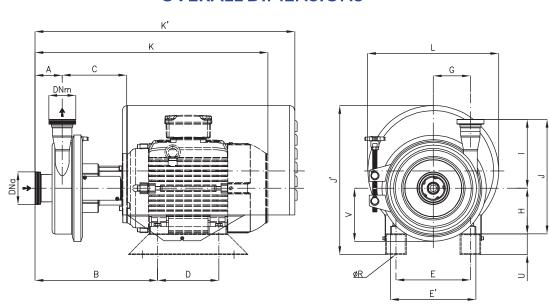
Food processing, dairy, beverage, chemical, cosmetics and pharmaceutical industries. The open impeller allows a large range of products such as purified water, juices, creams, ice-cream mix, milk, wine, spirits, whey and WFI to be safely transferred.


GENERAL DIAGRAMS

Performance applies to H₂O at 20 °C, 1013 mbar Data not binding

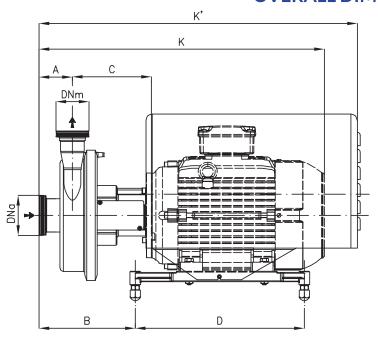
Q[I/min]

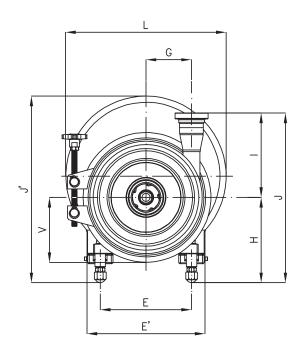
Q[I/min]


All stainless construction, with standard motor, separate pump shaft with clamp coupling, internal product seal and an open impeller.

The clamp casing and seal design allow quick disassembly for inspection, cleaning and maintenance. It also enables the delivery port to be rotated to any position for easy installation and drainage.

Motor shroud.


OVERALL DIMENSIONS



Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

	- Dill	1011310	113 1100	Dillaili	8 5.1	- DIN	1100.	Imaic	trii cac	ica coi	meetic	1115 4416	I	aura it	_ C/ L I \	IIIOCOI				
Pumps	IEC motors size:	DNa	DNm	Α	В	С	D	Е	E'	G	Н	К	K'	ØR	ı	J	J,	L	U	٧
	80				277	4505	100	125	155		80	463	584	40		263	286	202	40	
	90				282,5	153,5	100	140	165		90	501	597	10		273	318	303	40	
CN 1	100	50	40	73	240.5		1.10	160	196	86	100	572	673		183	283	389	369	50	127
	112				319,5	183,5	140	190	226		112	591	6/3	12		295	402	369	50	
	132 S				357,5		178	216	256		132	627	744			315	412	380	60	
	80				286		100	125	155		80	472	593			280	286			
	90 S				202	157	100	140	1/5		00	500	/0/	10		200	047	303	40	
	90 L	, _			292		125	140	165		90	508	606			290	317			
CNIO	100	65		70	220		1.10	160	196	108	100	580	683		200	300	388	369	50	454
CN 2	112	65	50	79	329	407	140	190	226	108	112	598	683	40	200	312	400	369	50	154
	132 S				255	187	140	247	25/		100	635	750	12		222	400	200	/0	
	132 M				355		178	216	256		132	673	753			332	432	380	60	
	160				404	217	254	254	300		160	778	911	15		360	528	473	50	
	90 S				296	159	100	140	1/1		90	F10	/00	10		345	240	202	40	
	90 L				290	159	125	140	164		90	519	609	10		345	318	303	40	
	100					100	140	160			100	585	687					2/0	50	
CN 3	112	80	65	81		189	140	190		129	112	604	087		255			369		179
	132 S				2505	100 E	140	216	254		132	640	757	12		387	422	200	40	
	132 M				338,3	188,5	178	210	256		132	678	/3/	12		367	432	380	60	
	160				407,5	218,5	254	254	300		160	784	915	15		415	588	473	50	

OVERALL DIMENSIONS

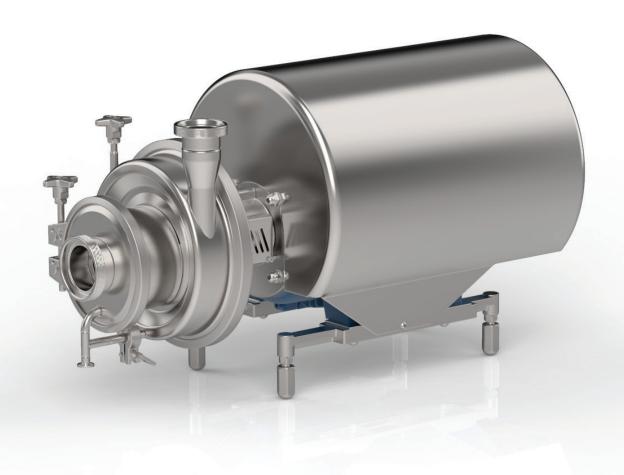
Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

Pumps	IEC motors size:	DNa	DNm	Α	В	С	D	E	E'	G	Н	К	K'	I	J	J,	L	V
	80					4505					1/0	463	584		350	333	303	
	90				210	153,5	270	138	213		160	501	597		343	348	303	
CN 1	100	50	40	73	247		285	150	243	86	170	572	673	183	353	409	369	127
	112				239	183,5	315	180	243		182	591	6/3		365	422	369	
	132 S				218		400	216	279		202	627	744		385	425	380	
	80					157					185	472	593		367	333	303	
	90				219	157	270	140	213		183	508	606		385	372	303	
	100				257	187	285	150	243		194	580	683		394	433	369	
CN 2	112	65	50	79	249	187	315	180	243	108	206	598	003	200	406	445	309	154
	132 S				228	187	400	216	279		202	635	753		402	442	380	
	132 M				220	107	400	210	2/9		202	673	/53		402	442	360	
	160				249	217	475	270	333		211	778	911		411	528	473	
	90				223	159	270	140	213		185	519	609		438	372	303	
	100				260	189	285	160	243		194	585	687		449	433	369	
CN 3	112	80	65	81	252	109	315	180	243	129	205	604	007	255	460	433	309	179
CN3	132 S	00	05	01	231	100 5	400	21/	279	129	227	640	757	255	482	4/7	380	1/9
	132 M				231	188,5	400	216	2/9		221	678	/5/		482	467	380	
	160				217,5	218,5	475	270	333		211	784	915		466	528	473	

<u>CSF</u>

Self-priming Centrifugal Pumps

CNH Series



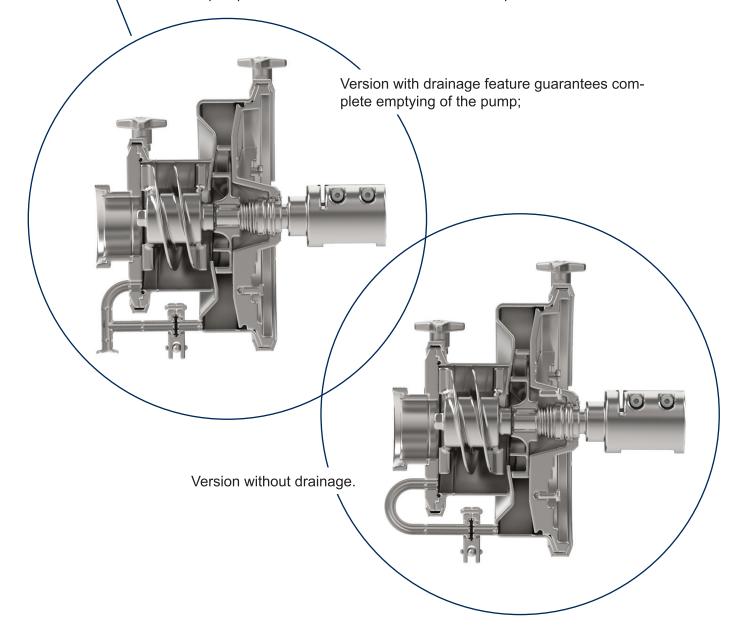
The CNH series is made up of single-stage centrifugal pumps with self-priming device, axial suction port, open centrifugal impeller and independent shaft.

The self-priming devices is made up of a helical rotor installed in front of the impeller and a rotor chamber which is off-centre in relation to the axis of the centrifugal stage.

The series is made up of range of 2 models with open impeller, independent shaft and standard IEC motor. Mixed construction: pressed/cast stainless steel - AISI 316L (1.4404) - CF3M (1.4409).

Investment casting and electrochemical polishing treatment guarantee excellent levels of surface finish.

The pump incorporates a self-priming device which gives the centrifugal pump its suction capacity; this component guarantees continuous pump operation in applications handling biphasic fluids.


CNH self-priming centrifugal pumps can be used in industrial applications, for example in the food, dairy and beverage sectors, for tank emptying operations, CIP solution recirculation and for handling liquids with a high air content.

Close-coupled construction made entirely from stainless steel with standard motor, shaft with compression locking, internal seal and open impeller based on CN series pumps.

The clamp casing and seal design allows quick disassembly for inspection, cleaning and maintenance. It also enables the delivery port to be rotated to any position for easy installation. Protective motor shroud

Series of pumps available in two different versions of liquid recirculation:

Investment cast double vane rotor for creating the liquid ring inside the front section of the pump body.

Open reverse vane impeller with increased dimensions, designed in accordance with performance optimization criteria.

TECHNICAL DATA

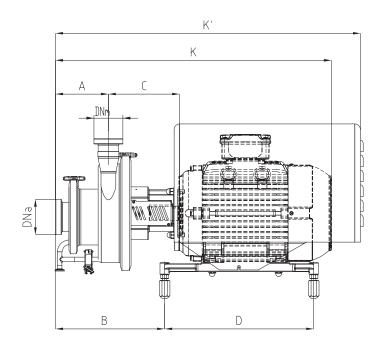
Flow rate up to 60 m³/h
Head values up to 70 mH₂O
Maximum suction pressure 4 bar (PN 10)
Temperature range: -10°C to +120°C

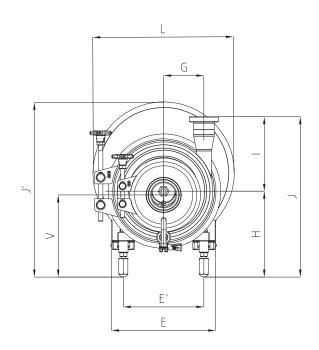
Seals:

Hygienic mechanical seals with seat standardized to EN 12756, ISO 3069 standards

Seal materials (FDA Regulation (EC) No. 1935/2004):

FPDM


Fluorocarbon


P.T.F.E. (Fep)

Connections:

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN 16 flanges and, on request, available in compliance with international standards.

OVERALL DIMENSIONS

Dimensions not binding - DN = DIN 11851 female connection with standard IEC/EN motors

Pump type	IEC motor dimensions:	DNa	DNm	A	В	ပ	D	Е	E'	О	н	к	K'	I	J	J'	L	v
	112				314.5		315	180	243		196	663.5	748.5		406	445	369	
CNH 2	132 S	65	50	144.5	293.5	187	400	216	279	108	192	700.5	818.5	210	402	442	380	144
	132 M				293.5		400	210	219		192	738.5	010.5		402	442	300	
	132 S				314.5	100 E	400	216	279		214	723.5	840.5		482	467	380	
CNH 3	132 M	80	65	164.5	314.3	100.5	400	210	219	129	214	761.5	040.5	268	402	407	300	166
	160				301	218.5	475	270	333		198	867.5	998.5		466	528	473	

Centrifugal Sanitary Pumps

CR Series

Standard design

Centrifugal pumps incorporating a special auger type screw shaped impeller, which is ideal for the gentle handling of very delicate fluids and large soft solids in suspension.

Wetted parts in investment cast CF-3M 1.4404 / AISI 316L stainless steel, electro-chemically polished to ensure the perfect surface finish.

Separate IEC standard motor.

Stainless steel shroud and adjustable feet on request.

Flow rates range from 0 to 150 m^3 /h, heads up to 20 m (2 bar).

The clamp casing and seal design allows quick disassembly for inspection, cleaning and maintenance. It also enables the delivery port to be rotated to any position for easy installation.

CR pump

CR pump with shroud

Applications

Delicate handling without clogging.

The CR Series has been designed for very gentle handling of sensitive media at extremely low flow velocities.

The screw shape impeller combines the properties of a centrifugal pump with the delicate characteristics of a positive displacement pump. The ability to handle high solids products in an extremely gentle way makes CR Series pumps ideal for food processing:

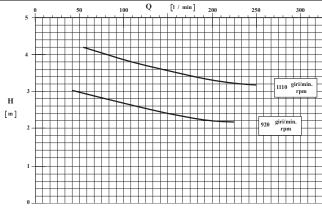
Fruit and vegetable handling, soups and sauces, cereals, fish transportation, food pastes, oil, wine recirculation.

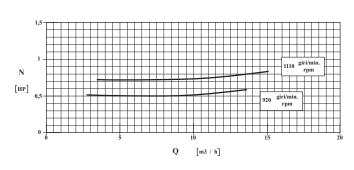
Seals:

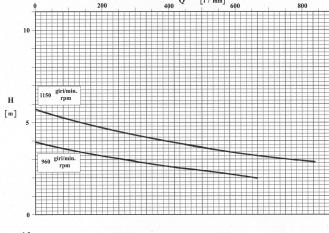
Mechanical seals seats to EN 12756, ISO 3069 standards. Single internal mechanical seal Single external mechanical seal Double flushed mechanical seal

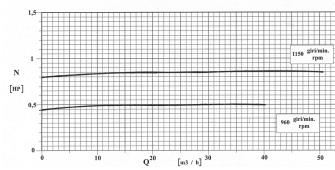
Elastomers (FDA):

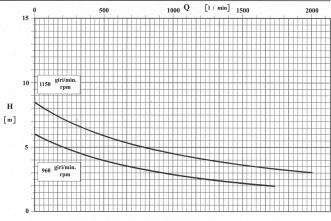
EPDM Fluorocarbon (Viton) Silicone P.T.F.E. (FEP)

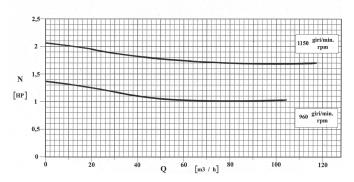

Connections:

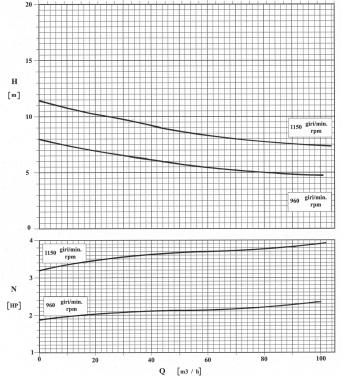

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN16 flanges to suit most international standards.


GENERAL DIAGRAMS

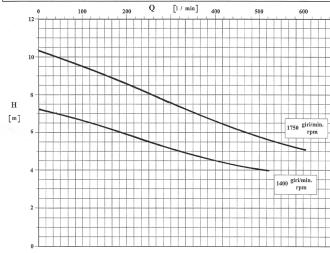


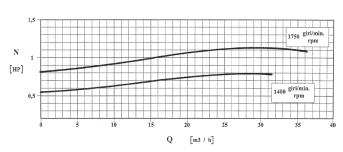


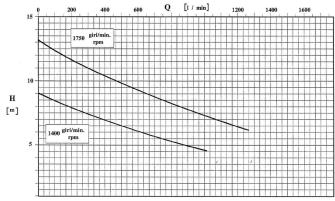

POMPA Pump type	TIPO		CR 80		n 9	60/1150	giri / min r. p. m.
			GIRANTE -	- Impeller			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
TIPO Type	N° di pale n° of vanes	Pass. sferico max. sphere	φ max max. diameter	φ min min. diameter	Bocche tipo Ports type	Bocca aspir. Suction port	DN 80
APERTA	1 Elica	45 mm	178 mm	mm	DIN 11851	Bocca mand. Discharge port	DN 80



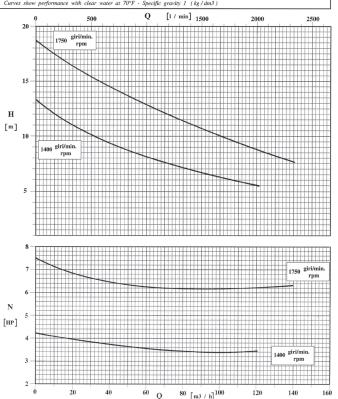
Pump type	TIPO		CR 100		n	960/1150	giri / min r. p. m.
			GIRANTE -	- Impeller			
	N° di pale n° of vanes	Pass. sferico max. sphere	φ max max. diameter	φ min min. diameter	Bocche tipo Ports type	Bocca aspir. Suction port	DN 100
APERTA	1 Elica	58 mm	210 mm	mm	DIN 1185	Bocca mand. Discharge port	DN 100



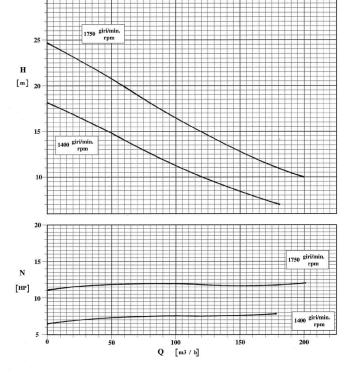

POMPA Pump type		C	R 125		n 96	0/1150	giri / min r. p. m.
			GIRANTE -	- Impeller			
TIPO Type	N° di pale n° of vanes	Pass. sferico max. sphere	Ø max max. diameter	Ø min min. diameter	Bocche tipo Ports type	Bocca aspir. Suction port	DN 125
APERTA	1 Elica	63 mm	260 mm	mm	DIN 11851	Bocca mand. Discharge port	DN 125
			NTO CON ACQU at 70°F - Specific			IFICO 1 (kg/	dm3)

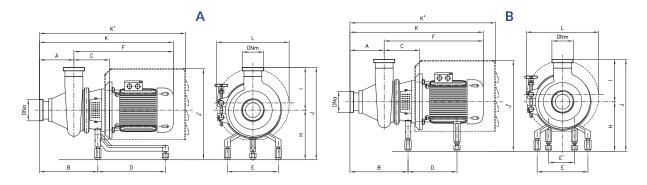

GENERAL DIAGRAMS





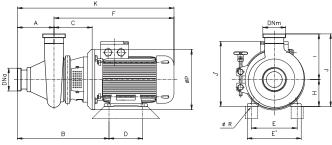
POMPA Pump type			CR 80		n _14	150/1750	giri / min r. p. m.
			GIRANTE —	— Impeller			
TIPO Type	N° di pale n° of vanes	Pass. sferico max. sphere	Ø max max. diameter	Ø min min. diameter	Bocche tipo Ports type	Bocca aspir. Suction port	DN 80
APERTA	1 Elica	45 mm	178 mm	mm	DIN 11851	Bocca mand. Discharge port	DN 80
CARATTE	RISTICHE D	FUNZIONAME	NTO CON ACQU at 70°F - Specific	A PULITA A 20°	C - PESO SPEC	Discharge port	




POMPA Pump type			CR 100		n 1	450/1750	giri / min
			GIRANTE —	Impeller			
TIPO Type	N° di pale n° of vanes	Pass. sferico max. sphere	ф max max. diameter	φ min min. diameter	Bocche tipo Ports type	Bocca aspir. Suction port	DN 100
APERTA	1 Elica	58 mm	210 mm	mm	DIN 11851	Bocca mand. Discharge port	DN 100
			NTO CON ACQU			CIFICO 1 (kg	/ dm3)

POMPA Pump type		- C	R 125		n 14	50/1750	giri / min r. p. m.
			GIRANTE —	— Impeller			
TIPO Type	N° di pale n° of vanes	Pass. sferico max. sphere	Ø max max. diameter	Ø min min. diameter	Bocche tipo Ports type	Bocca aspir. Suction port	DN 125
APERTA	1 Elica	63 mm	260 mm	mm	DIN 11851	Bocca mand. Discharge port	DN 125
			NTO CON ACQU at 70°F - Specific			CIFICO 1 (kg	/ dm3)
	0	100		Q 2000 [1 /	min]	3000	

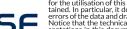
OVERALL DIMENSIONS



Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors A = motors from 0,55 kW to 4 kW

Pumps		kW	DNa	DNm	Α	В	С	D	Е	E'	F	Н	К	K'	I	J	J'	L
CR 65	E E	0,55 0,75 1,1 1,5	65	65	151	257	158	230	225	-	392 437	208	543 588	657	190	398	374	302
CR 80	1450 rp	1,1 1,5 2,2 3 4	80	80	181	297	168	300	225	-	452 508	213	632 690	699 767	245	458 475	379 435	302
CR 100		2,2 3 4	100	100	205	337	202	300	225	-	536	238	741	824	296	534	443	330

B = motors from 5,5 kW to 15 kW Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors


Pumps		kW	DNa	DNm	Α	В	С	D	Е	E'	F	Н	К	K'	ı	J	J,	L
	_	5,5				325	204	283		180	576	238	784	848		526	460	370
CR 100	50 rpr	7,5 11 15	100	100	205	326	249	408	225	230	727	247	932	1105	294	532	510	370
CD 125	14	5,5 7,5	125	125	232	370	230	292	225	180	604	238	836	900	346	584	501	430
CR 125		11 15	125	125	232	3/0	270	412	225	230	748	247	980	1035	346	593	510	430

$Dimensions \ not \ binding \ - \ DN = DIN \ 11851 \ male \ threaded \ connections, with \ standard \ IEC/EN \ motors$

Pumps		kW	DNa	DNm	Α	В	С	D	E	E'	F	Н	К	1	J	J,	ØΡ	ØR
	1	0,55				360			125	150	392	80	543		270	200		
CR 65		0,75 1,1 1.5	65	65	151	362	158	100	140	165	437	90	588	190	280	218	200	10
	1	1,1				406		125	140	165	452	90	632		335	218	200	10
		1,5			404		4.0		160	196	481	100	663	0.45	345	235		
CR 80	rpm	1,5 2,2 3 4	80	80	181	413	168	140	190	226	502	112	684	245	357	260	250	12
	1450	2,2 3				477	202	140	190	240	515 542	112	720 747		406	331 367	250	12
CR 100		4 5,5	100	100	205	497	202	178	216	256	576	132	781	294	426	299	300	12
		5,5 7,5 11 15				570	257	210	190	240	734	160	937		454	357	350	15
						550	000	140	04.6	05/	(0.4	400	001		470	40.4	000	10
CR 125		5,5 7,5 11 15	125	125	232	550	230	178	216	256	604	132	836	346	478	404	300	12
		15				610	270	210	254	300	748	160	980		506	432	350	15

DCATLCRGB 11/18

Centrifugal Sanitary Pumps

CS-CSX Series

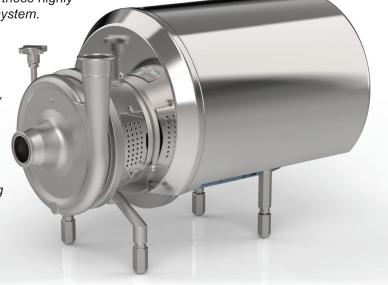
Closed coupled hygienic centrifugal pumps with open impellers. CS Series pumps meet the highest requirements of the food, pharmaceutical, chemical and water treatment industries.

The pumps are designed to a modular concept, resulting in a large number of models and a massive performance range.

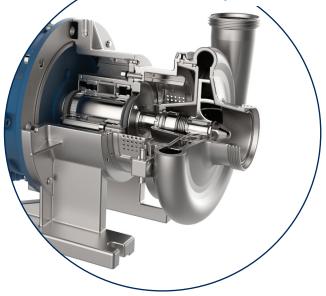
When combined with the extremely robust construction, these highly efficient pumps become ideal for any hygienic process system.

Wetted parts in CF-3M 1.4404 / AISI 316L stainless steel, investment cast and electro-chemically polished. Special internal finishes to 0,5 micron Ra are available on request (not on sizes 125 to 150). The clamp casing and seal design allows quick disassembly for inspection, cleaning and maintenance. It also enables the delivery port to be rotated to any position for easy installation (not on sizes 125 to 150).

Separate IEC standard motor.


For aggressive products and environments, CS pumps can on special request, be manufactured in the following materials:

Superduplex

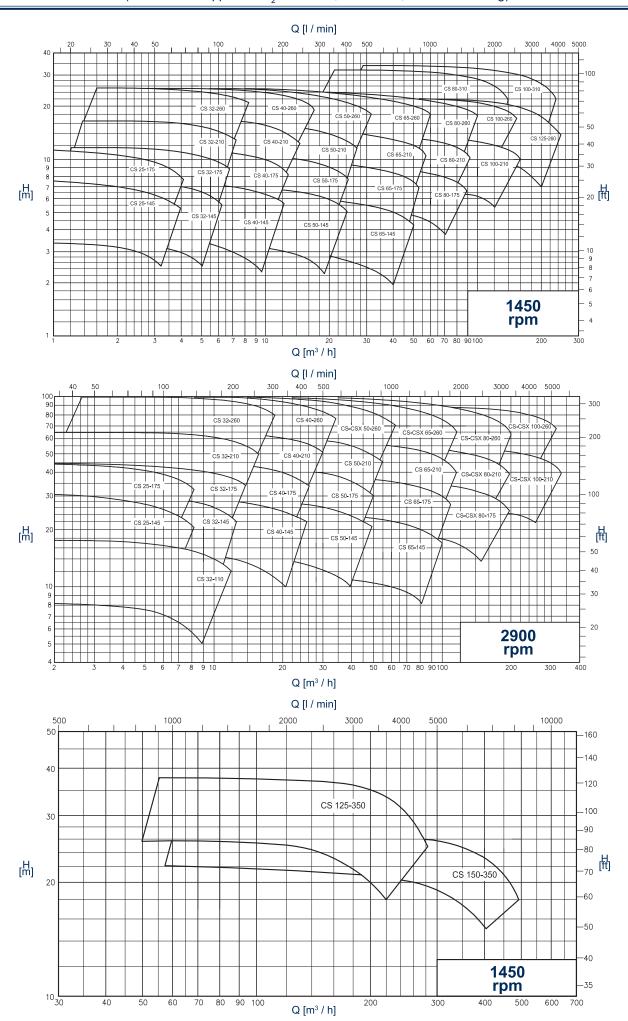

· Nickel steel

Note: upon availability with CSF.

ATEX-compliant versions also available on request.

CS pump X execution, close coupled centrifugal pumps with separate support frame andgrease lubricated bearings, for extremely arduous applications.





Special version equipped with an inducer in the suction port. This device is fitted immediately upstream of the impeller to reduce the NPSH required by the pump.

A wide range of 29 models divided into 4 groups.

TECHNICAL DATA

Flow rates up to 500 m3/h

Heads up to 100 mH2O

Maximum operating pressure 10 bar up to 100°C

Temperature range -20° ÷ +100°

(on request up to 140 °C for water and up to 190°C for food oil, to be specified on purchase order).

High performance, with low NPSH values.

Mechanical seals:

With seats to EN 12756, ISO 3069 standards. Single internal mechanical seal Single external flushed mechanical seal Double external flushed mechanical seal

Elastomers (FDA Regulation (EC) No. 1935/2004):

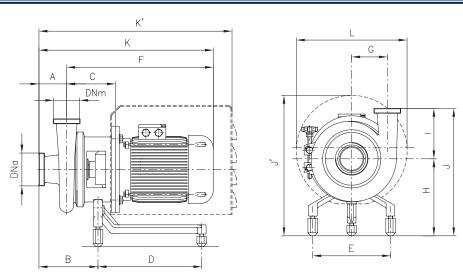
Nitrile (NBR)

Ethylene propylene (EPDM)

Special fluorocarbon seal

Fluorocarbon seal (FPM - FKM)

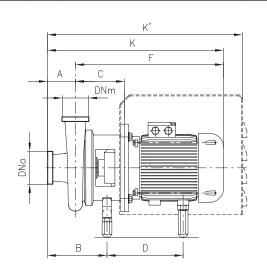
FEP

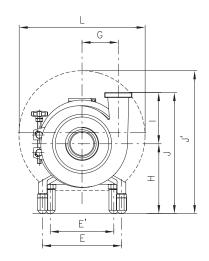

FFPM - FFKM

Silicone

Connections:

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN1092-1 PN16 flanges suitable for all international standards.

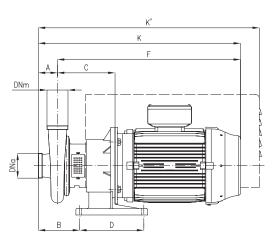

OVERALL DIMENSIONS



Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

Pump type	IEC motor dimensions:	DNa	DNm	Α	В	С	D	Е	F	G	Н	К	K'	ı	J	J'	L
	71					117			335			410	532			300	239
CS 25-145	80	32	25	75	144	123	190	178	359 403	81	158	434 478	541	145	303	340	298
	71					117			335			400	522			306	239
CS 25-175	80 90	32	25	65	134	123	190	178	359 403	96	164	424 468	531	149	313	346	298
00 20 110	100 112	02	20	00	101	138	301	225	454 466	00	210	519 531	619	110	359	353	330
	71					117			335			405	527			291	239
CS 32-110	80 90	40	32	70	137	123	190	178	359 403	65	149	429 473	536	110	259	331	298
	80 90					138	231		374		208	454 498			353	372	298
CS 32-145	100	40	32	80	167	139	301	225	418 455	85	225	535	566	145	370	430	330
	112 80					139	231		467 375		213	547 455			363	385	298
CS 32-175	90	40	32	80	167			225	419 456	95		499 536	567	150			
	112					140	301		468		230	548			380	435	330
CS 32-210	80 90	40	32	80	158	139	231	225	375 419	110	221	455 499	567	165	386	385	298
00 32-210	100 112	40	32	00	130	140	301	223	456	110	238	536	636	103	403	443	330
	90					163	231		443		221	533	601		393	385	298
CS 32-260	100 112	50	32	90	184	164	301	225	480 492	140	238	570 582	670	172	410	443	330
	80 90					139	231		375 418		208	455 498	567		341	372	298
CS 40-145	100 112	50	40	80	168	140	301	225	455 467	90	225	535 547	636	133	358	430	330
	80					141	231		377		213	457	569		363	377	298
CS 40-175	90	50	40	80	169			225	421 458	95		501 538		150			
	112 80					142	301		470 377		230	550 457	638		380	435	330
CS 40-210	90	50	40	80	161	141	231	225	421	115	221	501	569	165	386	385	298
.0210	100 112			20		142	301		458 470		238	538 550	638	.50	403	443	330

Pump	type	IEC motor dimensions:	DNa	DNm	Α	В	С	D	E	F	G	н	к	K'	ı	J	J'	L
		90					163	231		443		221	543	611		393	385	298
CS 40	0-260	100 112	50	40	100	194	164	301	225	480 492	145	238	580 592	680	172	410	443	330
CS 50	0-145	80 90	65	50	80	170	141	231	225	377 421	95	208	457 501	569	145	353	372	298
03 30	J-143	100 112	0.5	30	00	170	142	301	223	458 470	95	225	538 550	638	143	370	430	330
CS 50	n_175	80 90	65	50	80	169	141	231	225	377 421	100	213	457 501	569	150	363	377	298
00 30	0-173	100 112		30		100	142	301	220	458 470	100	230	538 550	638	130	380	435	330
		90					141	231		421		221	501	569		386	385	298
CS 50	0-210	100 112	65	50	80	161	142	301	225	458 470	120	238	538 550	638	165	402	443	330
CS 50	0-260	100 112	65	50	90	185	165	301	225	481 493	145	238	571 583	671	175	413	443	330
CC	E 44E	80 90	80	65	79	173	145	231	225	381 425	112	208	460 504	572	145	353	372	298
CS 65	0-145	100 112	80	65	79	173	146	301	225	462 474	112	225	541 553	642	145	370	430	330
		90					144	231		424		213	504	572		363	377	298
CS 65	5-175	100 112	80	65	80	172	145	301	225	461 473	120	230	541 553	641	150	380	435	330
		90					168	231		448		221	538	605		386	385	298
CS 65	5-210	100 112	80	65	90	189	169	301	225	485 497	135	238	575 587	675	165	403	443	330
CS 65	5-260	100 112	80	65	100	198	168	301	225	484 496	155	238	584 596	684	205	443	443	330
CS 80	0-175	100 112	100	80	100	204	174	301	225	490 502	139	230	590 602	690	164	394	435	330
CS 80	0-210	100 112	100	80	100	201	171	301	225	487 499	145	238	587 599	687	165	403	443	330
CS 80	0-260	100 112	100	80	100	201	171	301	225	487 499	165	238	587 599	687	209	447	443	330

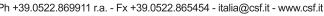


Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

Pump type	IEC motor dimensions:	DNa	DNm	Α	В	С	D	E	F	G	Н	К	K'	I	J	J'	L	L
CS 32-210	132 S 132 M	40	32	80	158	161	309	225	198	571	110	238	651	735	165	403	460	370
	160					206	446		254	733			813	907			546	478
CS 32-260	132 S 132 M	50	32	90	184	185	318	225	198	595	140	238	685	769	172	410	460	370
	160					225	450		254	752		247	842	940		419	555	478
CS 40-175	132 S 132 M	50	40	80	169	164	301	225	198	574	95	230	654	738	150	380	460	370
	160				161	208	438		254	735	115	238	815	909	165	403	546	478
CS 40-210	132 S 132 M	50	40	80	161	164	309	225	198	574	115	238	654	738	165	403	460	370
	160					208	446		254	735			815	909			546	478
	132 S 132 M					185	318		198	595		238	695	779		410	460	370
CS 40-260	160 180	50	40	100	194	225	494 532	225	254 279	752 779	145	247	852 879	950	172	419	555	478
CS 50-145	132	65	50	80	170	164	300	225	198	574	95	225	654	738	145	370	447	370
00 00 110	132 S	- 00	- 00	- 00	110						- 00				110	070		
CS 50-175	132 M	65	50	80	169	164	301	225	198	574	100	230	654	738	150	380	452	370
	160					208	438		254	735			815	909			538	478
	132 S 132 M				161	164	309		198	574		238	654	738		403	460	370
CS 50-210	160	65	50	80	101	208	446	225	254	735	120	238	815	909	165	403	546	
	180				171	223	494		279	777		248	857	928		413	556	478
CS 50-260	160 180	65	50	90	186	228	450 494	225	254 279	755 782	145	247	845 872	943	175	422	555	478

Pump type	IEC motor dimensions:	DNa	DNm	Α	В	С	D	E	E'	F	G	Н	к	K'	I	J	J'	L
CS 65-145	132 S 132 M	80	65	79	173	168	300	225	198	578	112	225	657	741	145	370	447	370
	160					212	437		254	739			818	912			533	478
00 05 475	132 S 132 M	80	65	80	172	167	301	225	198	577	120	230	657	741	150	380	452	370
CS 65-175	160 180	80	00	80	173	211 224	482 493	225	254 279	738 778	120	241	818 858	912 929	150	391	538	478
CS 65-210	160 180	80	65	90	189	231	450 494	225	254 279	758 785	135	247	848 875	946	165	412	555	478
	132 S 132 M					190	318		198	600		238	700	784	205	443	460	370
CS 65-260	160 180	80	65	100	198	230	450 494	225	254 279	757 784	155	247	857 884	955	205	452	555	478
	132 S				204	195	316		198	603		230	703	787		394	452	370
CS 80-175	160 180	100	80	100	205	236	449 493	225	254 279	763 790	139	241	863 890	961	164	405	549	478
	132 S					193	318		198	603		238	703	787	165	403	460	370
CS 80-210	160 180	100	80	100	201	233	450 494	225	254 279	760 787	145	247	860 887	958	164	411	555	478
CS 80-260	132 S 132 M	100	80	100	201	193	318	225	198	603	165	238	703	787	209	447	460	370
55 55 255	160					233	494		254	760		247	860	958		456	555	478
CS 80-310	160 180	100	80	100	202	235	495 533	225	254 279	767 827	200	250	867 927	994	250	500	560	480
CS 100-210	132 180	125	100	111	219	200 240	318 494	225	198 279	610 794	161	238 247	721 905	805 976	214	452 461	460 555	370 478
	132 M					195	318		198	605		238	720	804		454	460	370
CS 100-260	160	125	100	115	218	235	454	225	254	762	186	247	877	975	216		EEE	478
	180					235	494		279	789		247	904	9/5		463	555	4/8
CS 100-310	160 180	125	100	115	221	239	495 533	225	254 279	771 831	214	250	886 946	1013	259	509	560	480
	132 M					203	318		198	613		238	723	621		454	460	370
CS 125-260	160 180	150	125	110	223	244	450 494	225	254 279	771 798	206	247	881 908	979	216	463	555	478

PUMPS CSX SERIES FOR POWER OF 30/37 KW (MOTOR SIZE IEC 200)



Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

Pump type		DNa	DNm	Α	В	С	D	E	E'	F	G	Н	К	K'	ØR	ı	J	J'	L
CSX 50-260		65	50	90	201	296				915	145		1005	1141		175	433		
CSX 65-260	ns:	80	65	100	213	298				917	155		1017	1153		205	463		
CSX 80-175	dimensions	100	80	100	219	304				923	139		1023	1159		164	422		
CSX 80-210	ime	100	80	100	216	301				920	145		1020	1156		164	422		
CSX 80-260		100	80	100	216	301	335	284	360	920	165	258	1020	1156	21	209	467	613	530
CSX 80-310	motor	100	80	100	218	303	333	204	300	964	200	236	1064	1154	21	250	508	013	330
CSX 100-210	EC	125	100	111	234	308				927	161		1038	1174		214	472		
CSX 100-260	_	125	100	115	233	303				922	186		1037	1173		216	474		
CSX 100-310		125	100	115	237	307				968	215		1083	1172		259	517		
CSX 125-260		150	125	110	237	312				931	206		1041	1177		216	474		

C.S.F. Inox S.p.A. Strada per Bibbiano, 7 - 42027 Montecchio E. (RE) - ITALY EU

All the instructions, data and representations (in whatever way executed) listed in this publication are indicative and do not binding. C.S.F. does not stand surely or undertake any obligation for the utilisation of this document and for the information contained. In particular, it does not guarantee against omissions or errors of the data and drawings here indicated.

Notice that the technical specifications, information and representations in this document are merely indicative and approximate.

C.S.F. INOX reserves the right at any moment and without notice to modify the data, drawings and information indicated in this document.

Aseptic Centrifugal Sanitary Pumps

CSD Series

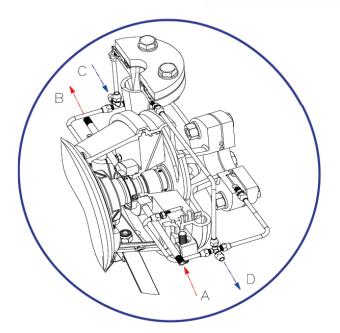
Closed coupled hygienic and aseptic centrifugal pumps with open impellers.

For optimal product security, the CSD aseptic series incorporates a steam protection

barrier between the pumped product and the external environment. It is composed of two different flushing systems: one with very high temperature water for the mechanical seal and the second is steam on the product pump connections.

Wetted parts in CF-3M 1.4404 / AISI 316L stainless steel, investment cast and electro-chemically polished.

Special internal finishes to 0,5 micron Ra are available on request.


The clamp casing and seal design allows quick disassembly for inspection, cleaning and maintenance.

Separate IEC standard motor.

For aggressive products and environments, CSD pumps can on special request, be manufactured in the following materials:

- Superduplex
- Nickel steel

Note: upon availability with CSF

- A Mechanical seal flushing inlet
- B Mechanical seal flushing outlet
- C Flushing inlet of the casing / cover barrier and inlet outlet port flanges
- D Flushing outlet of the casing / cover barrier and inlet outlet port flanges

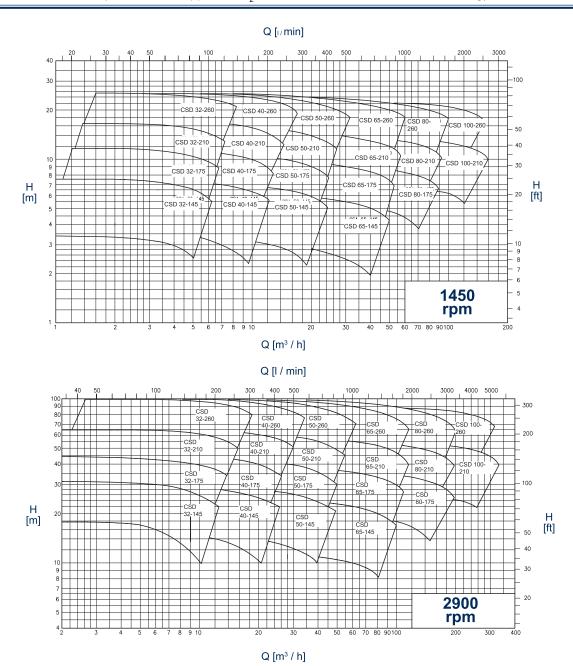
Steam protective barrier

The steam piping must be connected to the "C" inlet fitting. The steam creates a sterile protection barrier for the pumped product by circulating inside the circuit positioned between the casing / cover and the inlet and outlet flanges.

The steam collecting piping will be connected to the "D" steam outlet fitting.

The piping conveying the overheated water for cooling of radial seal must be connected at the inlet to the "A" pipe and at the outlet to the "B" pipe

Note: For the good running of the pump it is important that the flushing liquid circulate inside the mechanical seal box before the pump start-up and it must be suspended after the pump stop only. Make closed-loop connection of the D steam outlet fitting to avoid contact with the atmosphere.



TECHNICAL DATA

Flow rates up to 300 m³/h Heads up to 90 mH₂O Maximum operating pressure 10 bar up to 100°C Temperature range -20° ÷ +100° High performance, with low NPSH values.

Connections:

UNI EN1092-1 PN16 flanges.

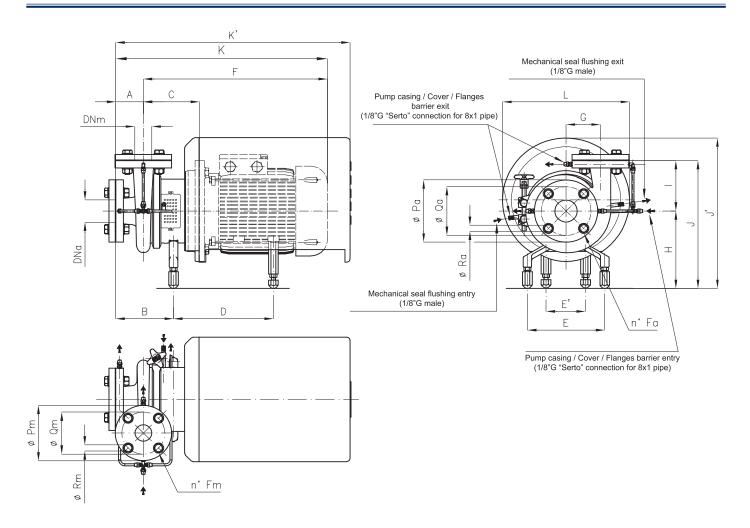
Elastomers (FDA Regulation (EC) No. 1935/2004):

Nitrile (NBR) Ethylene propylene (EPDM) Special fluorocarbon seal Fluorocarbon seal (FPM - FKM) **FEP** FFPM - FFKM Silicone

Mechanical seals:

Protected, balanced and bi-directional mechanical seals with seats to EN12756, ISO3069 standards.

Single internal mechanical seal with external protective barrier "V".


The "V execution" seal system is composed of an internal, protected, balanced and bi-directional mechanical seal with seats according to EN 12756 - ISO 3069 standards in direct contact with the product and of an external radial seal for the high temperature flushing liquid.

Use sterile condensate with flow rate $0.5 \div 1$ l/min and pressure ≤ 1 Bar.

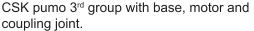
Technical Data for Sterlisation:

Maximum steam pressure: 3 Bar Maximum steam temperature: 130°C

OVERALL DIMENSIONS

Pump type	IEC motor dimensions:	DNa	DNm	Α	В	С	D	Е	E'	F	G	Н	к	K'	ı	J	J'	L	Ø Pa	Ø Qa	Ø Ra	Ø fa	Ø Rm	Ø Qm	Ø Rm	Ø fm
CSD	80 90					138	231			372 419		208	452 499	566		343	372	298								
32-145	100 112	40	32	80	167	139	301	225	-	475 468	85	225	555 548	635	135	360	430	330	150	110	18	4	140	100	18	4
CSD	80 90					139	231			373 420		213	453 500	567		348	377	298								
32-175	100 112	40	32	80	167	140	301	225	-	476 469	95	230	556 549	636	135	365	435	330	150	110	18	4	140	100	18	4
	80 90					139	231			373 420		221	461 508	575		376	385	298								
CSD	100 112	40	32	88	166	140	301	225	-	476 469	110		564	644	155		443	330	150	110	18	4	140	100	18	4
32-210	132 M-S 132 MB					161	283 281		180 185	546		238		688 743		393	460	370								
	160					206 163	408		230	700 444		221	788	943		398	501 385	430								
CSD	100 112					164	301		-	500 493			590 583	649		000	443									
32-260	132 M-S 132 MB	50	32	90	184	185	292 290	225		570 608	140	238	660	714 769	177	415	460	370	165	125	18	4	140	100	18	4
	160 80					225	412		230			247	809	968		424	510	430								
CSD	90	50	40	80	168	139	231	225	_	420 476	90	208	453 501	567	133	341	372	298	165	125	18	4	150	110	18	4
40-145	112					140	301			469		225	556 549	636		358	430	330								
	80 90					141	231		_	375 422		213	455 502	569		353	377	298								
CSD 40-175	100	50	40	80	169	142	301	225	100	478 471	95	230	558 551	638	140	370	435	330	165	125	18	4	150	110	18	4
	132 M-S 132 MB					164	275 273		185	549 587			667	683 738		070	452									
	160 80					208 141	400 231		230	375		238 221	455	937		378 386	493 385									
CSD	90 100 112	50	40	80	161	142	301	225	-	422 478 471	11 <i>E</i>		502 558 551	638	165			330	16F	125	18	1	150	110	10	1
40-210	132 M-S 132 MB	50	40	80	101	164	283 281	223	180 185	549	115	238		683 738	100	403	460		100	125	Ιδ	4	150	110	Ιŏ	4
	160					208	408		230	702			782	937			501	430								

Sanitary Centrifugal Pumps


CSK Series

Open impeller centrifugal pumps with a separate shaft a support frame containing oil-grease lubricated bearings.

CSK Series meet the highest requirements of the food, pharmaceutical, chemical and water treatment industries. The pumps are designed to a modular concept, resulting in a large number of models and a massive performance range. When combined with the extremely robust construction, these highly efficient pumps are ideal for any clean process application.

The design promotes full product drainage, making CSK pumps ideal for CIP and SIP systems.

Wetted parts in CF-3M 1.4404 / AISI 316L stainless steel, investment cast and electro-chemically polished. Special internal finishes to 0,5 micron Ra are available on request (not on sizes 125 to 150).

The clamp casing and seal design allows quick disassembly for inspection, cleaning and maintenance. It also enables the delivery port to be rotated to any position for easy installation (not on sizes 125 to 150). For aggressive products and environments, CSK pumps can on special request, be manufactured in the following materials:

- Superduplex
- Nickel steel

Note: upon availability with CSF.

ATEX-compliant versions also available on request.

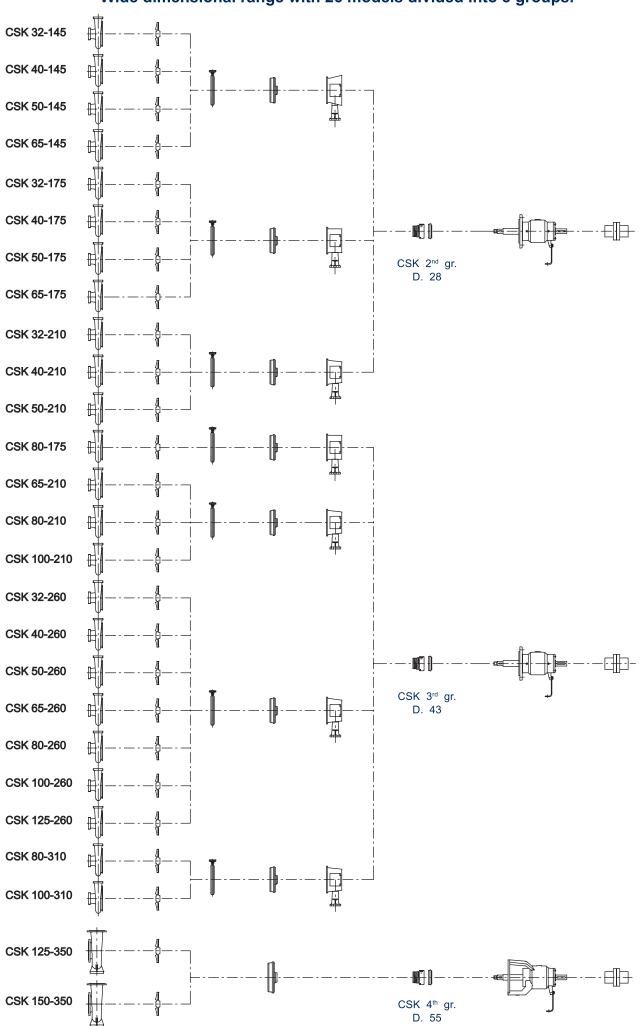
TECHNICAL DATA

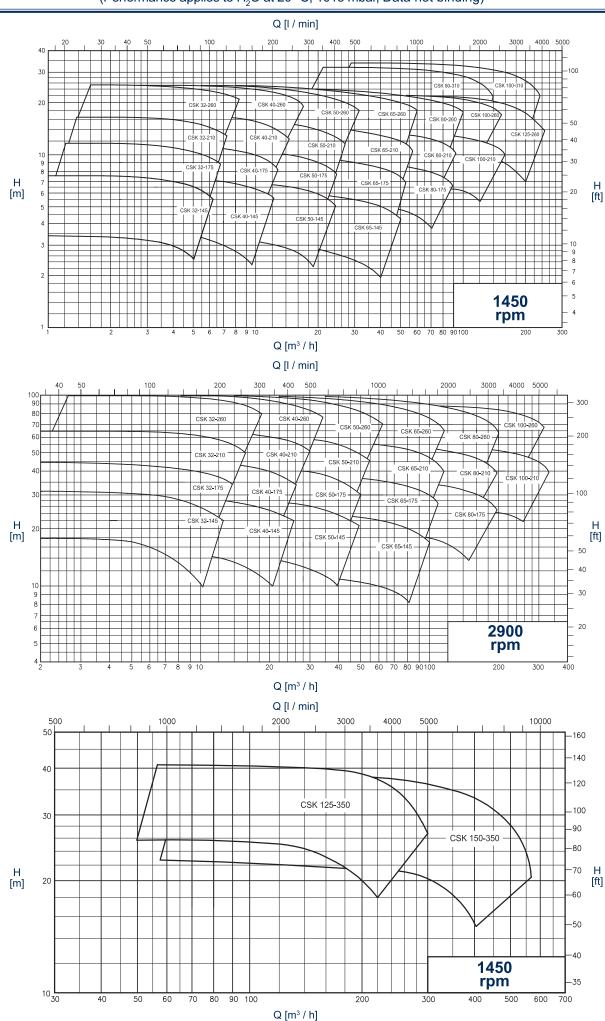
Flow rates up to 570 m³/h Heads up to 100 mH2O Maximum operating pressure 10 bar up to 100°C Temperature range -20° ÷ +100° (on request up to 140 °C for water and up to 190°C for food oil, to be specified on purchase order). High performance, with low NPSH values.

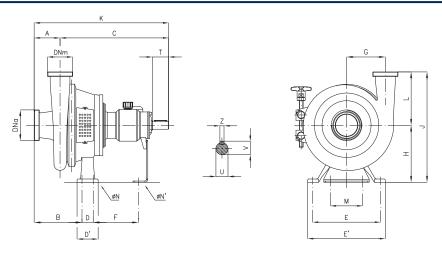
Mechanical seals with seats to EN 12756, ISO 3069 standards.

Single internal mechanical seal Single external flushed mechanical seal Double flushed mechanical seal

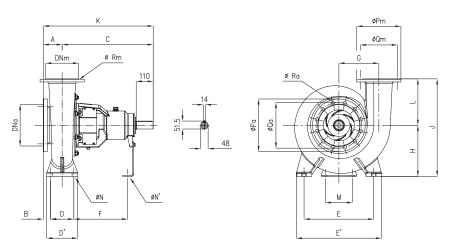
Elastomers (FDA Regulation (EC) No. 1935/2004):


Nitrile (NBR) Ethylene propylene (EPDM) Special fluorocarbon seal Fluorocarbon seal (FPM - FKM) **FEP** FFPM - FFKM Silicone


Connections:


DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN1092-1 PN16 flanges to suit most international standards

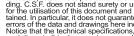
Wide dimensional range with 26 models divided into 3 groups.



Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pump type	DNa	DNm	Α	В	С	D	D'	Е	E'	F	G	Н	K	J	L	М	N	N'	Т	U	٧	Z
CSK 32-145	40	32	80	135	335	60	85	208	240	128	85	176	415	321	145	100	11	10	50	24	27	8
CSK 32-175	40	32	80	136	334	60	85	208	240	127	95	176	414	326	150	100	11	10	50	24	27	8
CSK 32-210	40	32	80	136	335	60	85	208	240	127	110	176	415	341	165	100	11	10	50	24	27	8
CSK 32-260	50	32	90	144	468	80	106	300	340	202	140	225	558	397	172	110	14	12	80	32	35	10
CSK 40-145	50	40	80	136	335	60	85	208	240	128	90	176	415	309	133	100	11	10	50	24	27	8
CSK 40-175	50	40	80	138	337	60	85	208	240	126	95	176	417	326	150	100	11	10	50	24	27	8
CSK 40-210	50	40	80	138	337	60	85	208	240	126	115	176	417	341	165	100	11	10	50	24	27	8
CSK 40-260	50	65	100	154	468	80	106	300	340	202	145	225	568	397	172	110	14	12	80	32	35	10
CSK 50-145	65	50	80	138	337	60	85	208	240	127	95	176	417	321	145	100	11	10	50	24	27	8
CSK 50-175	65	50	80	139	337	60	85	208	240	126	100	176	417	326	150	100	11	10	50	24	27	8
CSK 50-210	65	50	80	138	337	60	85	208	240	126	120	176	417	341	165	100	11	10	50	24	27	8
CSK 50-260	65	50	90	146	471	80	106	300	340	202	145	225	561	400	175	110	14	12	80	32	35	10
CSK 65-145	80	65	79	141	341	60	85	208	240	128	112	176	420	321	145	100	11	10	50	24	27	8
CSK 65-175	80	65	80	142	340	60	85	208	240	127	120	176	420	326	150	100	11	10	50	24	27	8
CSK 65-210	80	65	90	149	474	80	106	300	340	202	135	225	564	390	165	110	14	12	80	32	35	10
CSK 65-260	80	65	100	158	473	80	106	300	340	202	155	225	573	430	205	110	14	12	80	32	35	10
CSK 80-175	100	80	100	166	479	80	106	300	340	200	139	217	579	381	164	110	14	12	80	32	35	10
CSK 80-210	100	80	100	161	476	80	106	300	340	202	145	225	576	389	164	110	14	12	80	32	35	10
CSK 80-260	100	80	100	161	476	80	106	300	340	202	165	225	576	424	209	110	14	12	80	32	35	10
CSK 100-210	125	100	111	178	483	80	106	300	340	202	161	225	593	439	214	110	14	12	80	32	35	10
CSK 100-260	125	100	115	178	478	80	106	300	340	202	186	225	593	441	216	110	14	12	80	32	35	10
CSK 100-310	125	100	115	181	482	80	106	300	340	202	215	238	597	497	259	110	14	12	80	32	35	10
CSK 125-260	150	125	110	182	487	80	106	300	340	202	206	225	597	441	216	110	14	12	80	32	35	10

Dimensions not binding - DN = Flanges UNI EN 1092-1 PN16


Pump type	DNa	DNm	Α	В	С	D	D'	E	E'	F	G	Н	K	J	L	М	N	N'	Ø Pm	Ø Pa	Ø Qm	Ø Qa	Ø Ra	Ø Rm	n° fori a	n° fori m
CSK 125-350	150	125	122	47	586	150	200	400	500	346	232	280	708	580	300	110	22	14	250	285	210	240	22	18	8	8
CSK 150-350	200	150	122	47	580	150	200	450	550	348	258	330	702	630	300	175	22	20	285	340	240	295	22	22	12	8

.S.F. Inox S.p.A. Strada per Bibbiano, 7 - 42027 Montecchio E. (RE) - ITALY EU h +39.0522.869911 r.a. - Fx +39.0522.865454 - italia@csf.it - www.csf.it

xport Department • Commercial Étranger • Comercial Extranjero

All the instructions, data and representations (in whatever way executed) listed in this publication are indicative and do not binding. C.S.F. does not stand surety or undertake any obligation for the utilisation of this document and for the information contained. In particular, it does not guarantee against omissions or errors of the data and drawings here indicated.

Notice that the technical specifications, information and representations in this document are merely indicative and approximate.

C.S.F. INOX reserves the right at any moment and without notice to modify the data, drawings and information indicated in this document.

Centrifugal Single-stage and Multistage Pumps

CSM Series

Standard design

CSM Series, extremely robust stainless steel pumps designed for high pressure duties with medium to low flow rates; especially suitable for applications with high suction or system pressures.

Made from solid CF-3M 1.4404 / AISI 316L stainless steel, the wetted parts have a high surface finish and electrochemical polish.

Single-stage and multistage models with up to 4 impellers.

Flow rates up to $50 \text{ m}^3/\text{h}$, heads up to 150 m (15 bar) for the multistage versions.

Flow rates up to $150\,\text{m}^3/\text{h}$, heads up to $60\,\text{m}$ (6 bar) for the single-stage versions.

Design pressure 40 bar.

Temperature range: 0 to 100°C.

Available in three different versions.

Standard CSM: Close coupled design using a standard motor, with a separate pump shaft supported by bearings.

"CSMX" version: Close coupled to a standard motor, with a foot mounted housing containing single or double shaft support bearings.

Multistage CSM pump version X

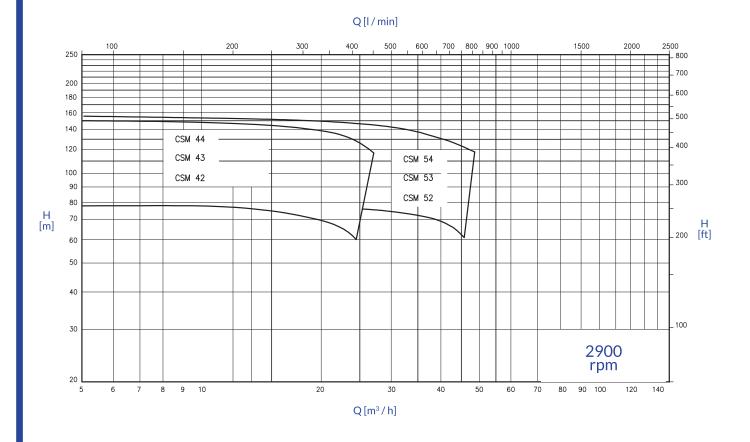
Seals:

Protected, balanced and bi-directional mechanical seals with seats to EN12756, ISO3069 standards. Single internal mechanical seal Single internal flushed mechanical seal

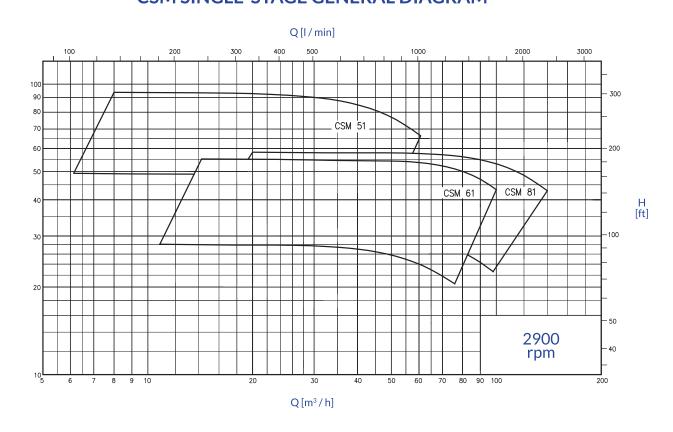
Elastomers (FDA):

EPDM Fluorocarbon (Viton)

Connections:

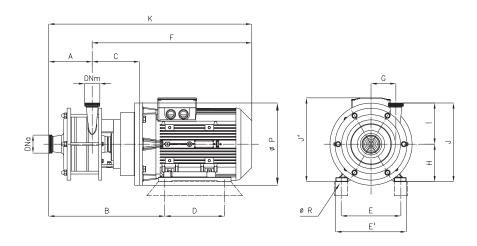

Flanges EN1092-1 PN40 Clamp for high pressures DIN 11851 / 11864-1 up to 25 bar

Single-stage CSM pump



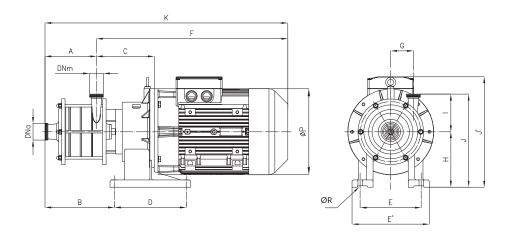
CSM MULTISTAGE GENERAL DIAGRAM

Performance applies to H₂O at 20 °C, 1013 millibar, Data not binding



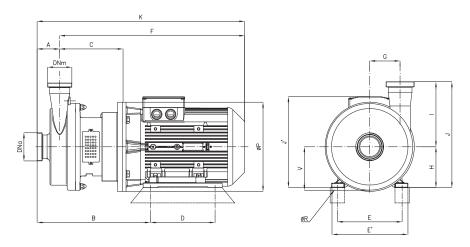
CSM SINGLE-STAGE GENERAL DIAGRAM

H [m]

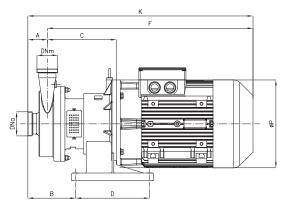

CSM MULTISTAGE OVERALL DIMENSIONS

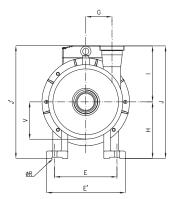
Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pump type		kW	DNa	DNm	Α	В	С	D	E	E'	F	G	Н	К	ØΡ	ØR	I	J	J,
CSM 42	_	11	50	40	139	463	216	210	254	300	694	86	160	883	350	14	203	363	357
CSM 42	шd.	18,5	50	40	139	463	216	254	254	300	694	86	160	883	350	14	203	363	357
CSM 43	00 r	18,5	50	40	192	516	216	254	254	300	694	86	160	886	350	14	203	363	357
CSM 43	290	22	50	40	192	529	216	241	279	340	776	86	160	968	350	14	203	363	442
CSM 44	• • •	22	50	40	245	582	216	241	279	340	776	86	180	1021	350	14	203	383	442
CSM 52		15	65	50	139	463	216	210	254	300	694	86	160	833	350	14	205	365	357
CSM 53		22	65	50	192	529	216	241	279	340	776	86	180	968	350	14	205	385	442


"X" version

Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors


Pump type	_	kW	DNa	DNm	Α	В	С	D	E	E'	F	G	Н	К	ØΡ	ØR	I	J	J,
CSMX 44	rpm	30	50	40	245	345	284	335	284	360	943	86	258	1188	400	21	203	461	563
CSMX 53	900	30	65	50	192	292	284	335	284	360	943	86	258	1135	400	21	205	463	563
CSMX 54	53	30	65	50	245	345	284	335	284	360	943	86	258	1188	400	21	205	463	563
CSMX 54		37	65	50	245	345	284	335	284	360	943	86	258	1188	400	21	205	463	563


CSM SINGLE-STAGE OVERALL DIMENSIONS

Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pump typo		kW	DNa	DNm	Α	В	С	D	Е	E'	F	G	Н	К	ØΡ	ØR	I	J	J'	V
CSM 51		15	65	50	73	431	250	210	254	300	728	140	160	801	350	15	240	400	357	195
CSM 51		18,5	65	50	73	431	250	254	254	300	728	140	160	801	350	15	240	400	357	195
CSM 51		22	65	50	73	444	250	241	279	340	810	140	180	883	350	15	240	420	442	195
CSM 61	md	11	80	65	84	445	253	210	254	300	731	100	160	815	350	15	250	410	357	170
CSM 61	_	15	80	65	84	445	253	210	254	300	731	100	160	815	350	15	250	410	357	170
CSM 61	2900	18,5	80	65	84	445	253	254	254	300	731	100	160	815	350	15	250	410	357	170
CSM 61	.,	22	80	65	84	458	253	241	279	340	813	100	180	897	350	15	250	430	442	170
CSM 81		11	100	80	100	461	253	210	254	300	731	120	160	831	350	15	255	415	357	170
CSM 81		15	100	80	100	461	253	210	254	300	731	120	160	831	350	15	255	415	357	170
CSM 81		18,5	100	80	100	461	253	254	254	300	731	120	160	831	350	15	255	415	357	170
CSM 81		22	100	80	100	474	253	241	279	340	813	120	180	913	350	15	255	430	442	170

"X" version

Dimensions not binding - DN = DIN 11851 male threaded connections, with standard IEC/EN motors

Pump type		kW	DNa	DNm	Α	В	С	D	Ε	E'	F	G	н	К	ØΡ	ØR	ı	J	J'	V
CSMX 51	rpm	30	65	50	73	216	325	335	284	360	935	140	258	1008	400	21	240	498	558	195
CSMX 61	00	30	80	65	84	227	328	335	284	360	938	100	258	1022	400	21	250	508	558	170
CSMX 81	29	30	100	80	100	243	328	335	284	360	938	120	258	1038	400	21	255	513	558	170
CSMX 81		37	100	80	100	243	328	335	284	360	938	120	258	1038	400	21	255	513	558	170

C.S.F. Inox S.p.A. Strada per Bibbiano, 7 - 42027 Montecchio E. (RE) - ITALY EU Ph+39.0522.869911 r.a. - Fx+39.0522.865454 - italia@csf.it - www.csf.it

Multistage Centrifugal Pumps

CV Series

Standard design

Multistage centrifugal pumps with closed impeller for medium and high heads.

Closed coupled design with closed impellers, directly mounted on to the motor shaft.

Setting up in horizontal and vertical way for every requirement of installation.

Industrial construction with motor shroud and adjustable feet on request.

Wetted parts in CF-8M 1.4408 / AISI 316 stainless steel, investment cast and electro-chemically polished.

Flow rates up to max. 40 m³/h, heads up to 140 m

Multistage CV 11....18 pumps vertical exec.

Seals:

Mechanical seals with seats to EN 12756, ISO 3069 standards. Single internal mechanical seal

Elastomers (FDA):

EPDM Fluorocarbon (Viton) Silicone FEP

Connections:

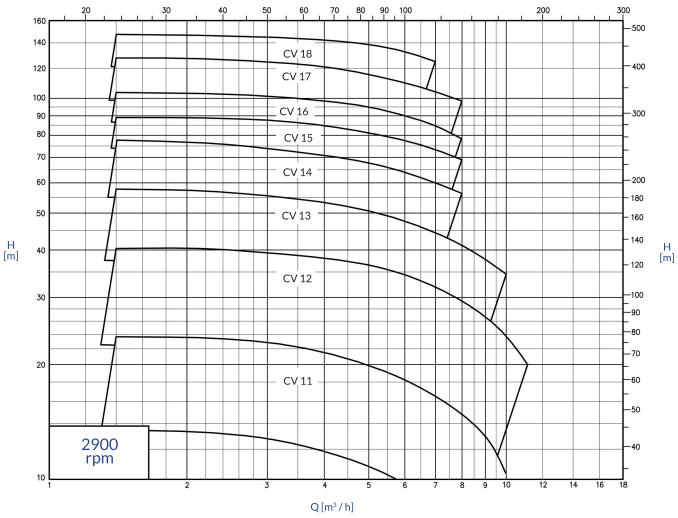
DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN16 flanges to suit most international standards

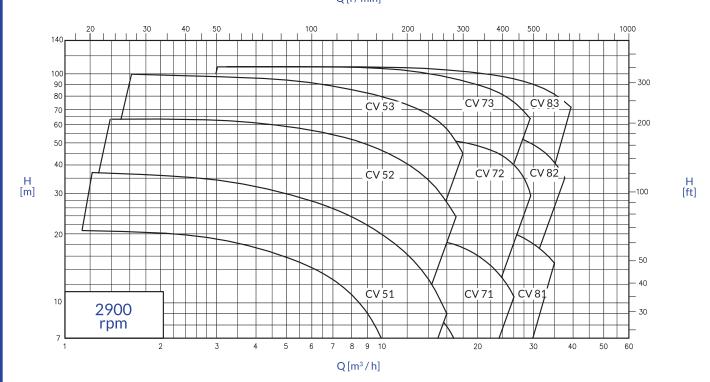
Applications

Suitable for industrial or foodstuffs applications where 316 stainless is necessary, but without any particular cleaning or sterility requirements.

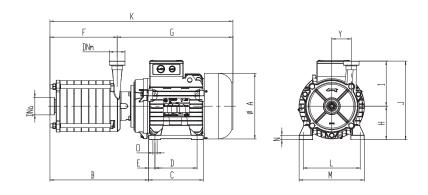
These remarkably sturdy and cost effective pumps are perfect for applications where hygiene is of low importance.

The closed impellers are not able to handle products which contain solids or highly viscous liquids. Widely used in:

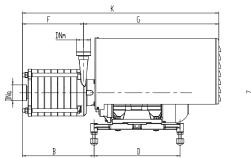

- Cleaning & washing systems
- Fluid Filtration
- General Transfer
- Feeding
- Water treatment

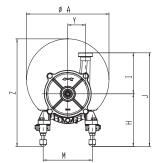

GENERAL DIAGRAMS

Performance applies to H₂O at 20 °C, 1013 mbar, Data not binding



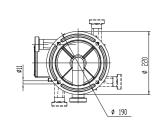
Q[I/min]

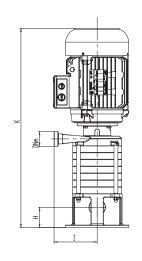


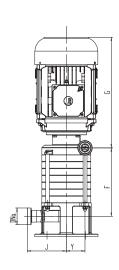

OVERALL DIMENSIONS

Dimensions not binding - DN = DIN 11851 male threaded connections

	Pump	ps	_	kW	DNa	DNm	Α	В	С	D	Ε	F	G	К	Н	J	1	L	М	N	0	Р	Υ
	CV :	11	rp	1,1	32	25	162	155	118	100	9	56	314	370	90	240	150	125	150	8	9,5	-	65
Г	CV :	12	8	1,5	32	25	181	182	143	100	12,5	80	314	394	90	240	150	140	165	10	10	-	65
	CV :	13	29	2,2	32	25	181	206	143	100	12,5	104	337	441	90	240	150	140	165	10	10	-	65
	CV :	14		3	32	25	202	236	176	140	13	128	337	465	100	240	150	160	196	12	12	-	65

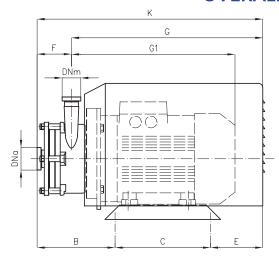


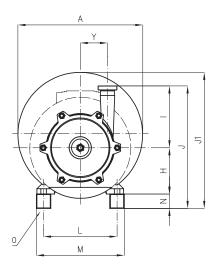



Dimensions not binding - DN = DIN 11851 male threaded connections

Pumps		kW	DNa	DNm	ØΑ	В	D	F	G	Н	I	K	J	М	Υ
CV 11	rp	1,1	32	25	238,5	92	230	56	395	178	150	451	315	136,5	65
CV 12	8	1,5	32	25	238,5	118	230	80	395	178	150	477	315	136,5	65
CV 13	29(2,2	32	25	238,5	140	230	104	395	178	150	499	315	136,5	65
CV 14	,,	3	32	25	238,5	164	230	128	395	178	150	523	315	136,5	65

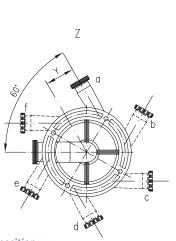
Outlet port position ref. a = standard exec. ref. b-c-d = exec. on request

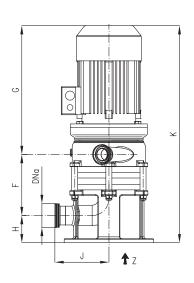


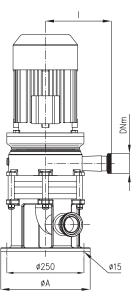


Dimensions not binding -DN = DIN 11851 male threaded connections

Pumps		kW	DNa	DNm	Α	F	G	Н	I	J	К	Υ
CV 11 V		1,1	32	25	220	69	316	71	150	136	456	65
CV 12 V	E	1,5	32	25	220	93	316	71	150	136	480	65
CV 13 V	rp	2,2	32	25	220	117	346	71	150	136	534	65
CV 14 V	8	3	32	25	220	141	346	71	150	136	558	65
CV 15 V	29	4	32	25	220	165	371	71	150	136	607	65
CV 16 V		4	32	25	220	189	371	71	150	136	631	65
CV 17 V		5,5	32	25	220	213	386	71	150	136	670	65
CV 18 V		5.5	32	25	220	237	386	71	150	136	694	65


OVERALL DIMENSIONS





Dimensions not binding - DN = DIN 11851 male threaded connections

Pun	nps		kW	DNa	DNm	ØΑ	В	С	Е	F	G	G1	Н	ı	J	J1	K	L	М	N	0	Υ
CV	51		2,2	50	40	298	186,5	200	107,5	80	414	378	90	214	344	294	494	140	180	40	10	94
CV	52	_	4	50	40	330	232	230	141	119	484	403	100	214	364	355	603	160	210	50	12	94
CV	53	pm	7,5	50	40	372	271	230	141	158	484	418	112	214	376	367	642	190	240	50	12	94
CV	71	0 1	4	50	40	330	193	230	141	80	484	403	100	214	364	355	564	160	210	50	12	94
CV	72	900	7,5	50	40	372	232	230	141	119	484	418	112	214	376	367	603	190	240	50	12	94
CV	73	2	11	50	40	372	287	266	132	158	527	469	132	214	406	415	685	216	276	60	12	94
CV	81		5,5	65	40	330	198	230	141	85	484	418	112	214	376	367	569	190	240	50	12	94
CV	82		11	65	40	372	253	266	132	124	527	469	132	214	406	415	651	216	276	60	12	94
CV	83		18,5	65	40	372	292	266	187	163	582	524	132	214	406	415	745	216	276	60	12	94

Outlet port position ref. a = standard exec. ref. b-c-d-e-f = exec. on request

Dimensions not binding - DN = DIN 11851 male threaded connections

Pumps		kW	DNa	DNm	ØΑ	F	G	Н		J	K	Υ			
CV 51 V		2,2	50	40	290	120	378	88	214	175	586	94			
CV 52 V		4	50	40	290	159	403	88	214	175	650	94			
CV 53 V	Ε	7,5	50	40	290	198	418	88	214	175	704	94			
CV 71 V	5	4	50	40	290	120	403	88	214	175	611	94			
CV 72 V	8	7,5	50	40	290	159	418	88	214	175	665	94			
CV 73 V	29	11	50	40	290	198	511	88	214	175	797	94			
CV 81 V		-	-	-	-	-	-	-	-	-	-	-			
CV 82 V		-	-	-	-	-	-	-	-	-	-	-			
CV 83 V		-	-	-	-	-	-	-	-	-	-	-			

DCATLCVGB 11/18

Ph+39.0522.869911 r.a. - Fx+39.0522.865454 - italia@csf.it - www.csf.it

Air-operated Piston Pumps

Standard design

PA Hygienic series

Wetted parts in AISI 304 (only for PA 140) or 316 stainless steel in both, short or long versions. Pump components are assembled with quick-release clamps for quick and easy strip cleaning.

Connections: DIN - SMS - IDF - BS / RJT - DS - CLAMP.

PA Industrial series (While stocks last)

Wetted parts in AISI 316 stainless steel. Short or long versions. Pump components are screwed together. Connections: GAS thread/BSP.

PAR Light duty industrial series

Wetted parts stainless steel in AISI 316. Pump components are screwed together. Very cost effective. Connections: GAS thread/BSP.

PAR short pump

Elastomers (FDA):

Nitrile NBR Fluorocarbon (Viton) P.T.F.E. Algoflon

Applications

Air-operated piston pumps are available in various versions, depending on the constructional features, materials and the applications for which they are to be used. They have been designed to meet the widest variety of requirements, from pumping simple products to extremely high viscosities. Including drum emptying, transfer, feed, conveying and spraying applications, especially where an easily adjustable flow rate is required. Pressures from 0 to 150 bar and flow rates from 1 to 80 l/min.

Thanks to the compressed driven air motor they are also suited for environments with potentially explosive atmospheres and in compliance with ATEX directives.

PERFORMANCE

PA HYGIENIC SERIES

PUMPS	Press rati		Recomm. max. cycles per minute	Max. flow rate I/min for viscosity of 1000 cP
PA 20A-45	25 :	1	150	1
* PA 30A-45	5 :	1	150	2
* PA 50AM-63	3,4 :	1	120	7,6
* PA 50AM-80	5,3 :	1	90	10
* PA 50AM-200	8,4 :	1	60	7,5
PA 50AM-230	14,6:	1	50	10,6
PA 50AM-250	20 :	1	50	6,2
* PA 65AM-80	1,6 :	1	80	20
* PA 65AM-200	2,5 :	1	60	17
* PA 65AM-230	4 :	1	50	24
PA 65AM-250	6:	1	50	14
* PA 80AM-200	2 :	1	60	24
* PA 80AM-230	3,3 :	1	50	33
* PA 80AM-250	4,5 :	1	50	20
PA 80AM-310	9:	1	50	32
* PA 100AM-200	1 :	1	60	37
* PA 100AM-230	1,8 :	1	50	52
* PA 100AM-255	2,5 :	1	50	52
* PA 100AM-310	5 :	1	50	50
* PA 140A-230	1,6 :	1	50	100
* PA 140A-255	2,2 :	1	50	100
* PA 140A-310	4 :	1	50	95

^{*} Available with ATEX 2G and 3G certification

PA INDUSTRIAL SERIES (While stocks last)

PUMPS	Pressure ratio	Recomm. max. cycles per minute	Max. flow rate I/min for viscosity of 1000 cP
* PA 40I-63	5,5 : 1	120	4,8
* PA 40I-80	8,8 : 1	90	6,4
* PA 40I-200	14 : 1	60	4,7
PA 40I-230	24,4: 1	50	6,7
PA 40I-250	33,2: 1	50	4
* PA 65I-80	1,6 : 1	80	20
* PA 65I-200	2,5 : 1	60	17
* PA 65I-230	4 : 1	50	24
PA 65I-250	6:1	50	14

^{*} Available with ATEX 2G and 3G certification

PAR SERIES

PUMPS	Pressure ratio	Recomm. max. cycles per minute	Max. flow rate l/min for viscosity of 1000 cP
PAR 30-50	4 : 1	180	7,5
PAR 40-50	2 : 1	180	12
PAR 50-50	1 : 1	180	25
PAR 50-65	2 : 1	160	25
PAR 65-50	0,7 : 1	160	55
PAR 65-65	0,7 : 1	160	55

ACCESSORIES

2" threaded clamp for drums

Double clamp

Outlet Pulsation Dampener

Wall brackets for holding and fixing pumps

VARIOUS OPTIONS

Short air-operated piston pump with scraper plate to empty barrels or cylindrical tanks. Excellent for high viscosity products.

Unit with double pneumatic pistons for vessels with a diameter exceeding 700 mm, including an air operated piston pump and scraper plate. For mixtures, jams, creams etc... to be transferred after processing.

Pneumatic lift with scraper plate for vessels with diameter up to 700 mm.

C.S.F. Inox S.p.A. Strada per Bibbiano, 7 - 42027 Montecchio E. (RE) - ITALY EU Ph+39.0522.869911 r.a. - Fx+39.0522.865454 - italia@csf.it - www.csf.it

Vertical Progressive Cavity Pumps

MAV Series

The MAV series progressive cavity pumps are designed for vertical operation with the inlet immersed in the product. The range consists of the following models, MAV 40, 50, 60L, 65, 70L, 80, 90L manufactured in stainless steel AISI 316.

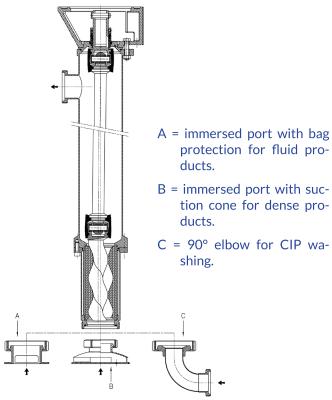
MAV Series pumps are intended for product transfer and drum or container emptying applications, in which the suction port is plunged directly into the product.

As standard, MAV pumps have a suction to discharge port dimension of 1100 - 1400 mm. On request, this distance can be personalised to suit a customer's requirements. It can be mounted on a drum-holding trolley, with a choice of either a manual sliding or an alternative pneumatic lift and lower system.

The operating characteristics and construction materials of these pumps enable the MAV series to be used with many different fluids, from low to high viscosity, including many abrasive and corrosive media. An added benefit is the ability to handle fluids containing fibres or solid materials in suspension.

The main components of the MAV series pumps, such as the stator, rotor, joints and mechanical seal are the same as used on the corresponding horizontal version.

CHARACTERISTICS OF MAV PUMPS


- constant, delicate flow without pulses
- absence of suction valves
- self-priming
- low noise level
- wide range of motor drives with fixed or variable speed

VERSIONS

h = Head, bar Q = Flow rate, m^3/h Na = Power, HP n = rpm

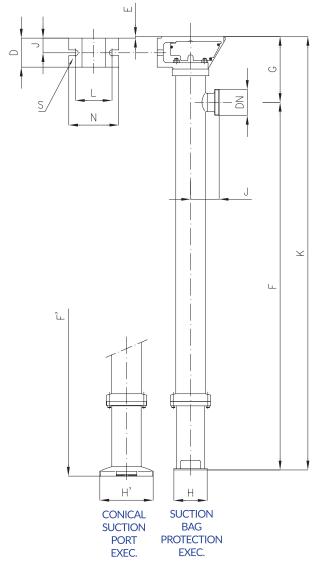
G:	CL		n=2	200	n=3	300	n=4	100	n=	500	n=c	500
Size	Stages	h	Q	Na	Q	Na	Q	Na	Q	Na	Q	Na
		1					0,6	0,35	0,8	0,35	1	0,35
	1 1	3					0,3	0,35	0,5	0,35	0,7	0,4
40		6									0,2	0,45
	2	9							0,3	0,6	0,5	0,7
		12									0,3	0,9
		1	0,9	0,6	1,5	0,6	2	0,6				
	1 1	3	0,8	0,8	1,3	0,9	1,8	1				
50		6	0,6	0,9	1,1	1,1	1,6	1,1				
	2	9	0,2	1,1	0,9	1,2	1,6	1,6				
		12	-	-	0,4	1,3	1,2	1,8				
		2	2,5	1,2	3,7	1.,3	5	1,4				
60	L	4	2,3	1,5	3,5	1,7	4,7	1,8				
		6	2	1,7	3,1	1,9	4,2	2,1				
	1	1	2,5	1,1	3,8	1,1	5	1,4				
		3	2,3	1,2	3,6	1,2	4,5	1,6				
65		6	1,7	1,5	2,8	1,7	4	2,1				
	2	9	1	2,8	2,6	3,3	4,1	3,7				
		12	0,3	3	1,6	3,4	3,6	3,9				
		2	5,4	2	8	2,3	10,6	2,8				
70	L	4	5	2,30	7,6	3	10,3	3,7				
, ,		6	4,6	2,8	7,2	3,7	9,8	4,6				
		1	4,7	2,2	7.,5	2,5						
80	1 1	3	4,4	2,5	7	3						
		6	3,8	2,9	6,4	3,5						
		2	13,4	3,5	20,5	4,1						
90	L	4	12,2	4,1	19	5,3						
70	-	6	10,8	5,2	17,2	6,5						

There is a version with suction port in two pieces. This is in order to achieve alternative solutions relating to various uses and the need to perform CIP washing at the end of the cycle.

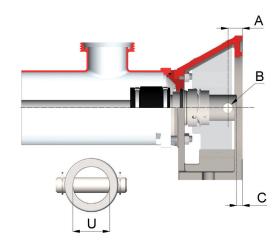
VARIOUS OPTIONS

MAV progressive cavity pump with manual vertical counterweight hoist.

> MAV progressive cavity pump with pneumatic vertical hoist and electropneumatic control panel.



MAV progressive cavity pump with rotating table, pneumatic column and control panel.


Overall dimensions

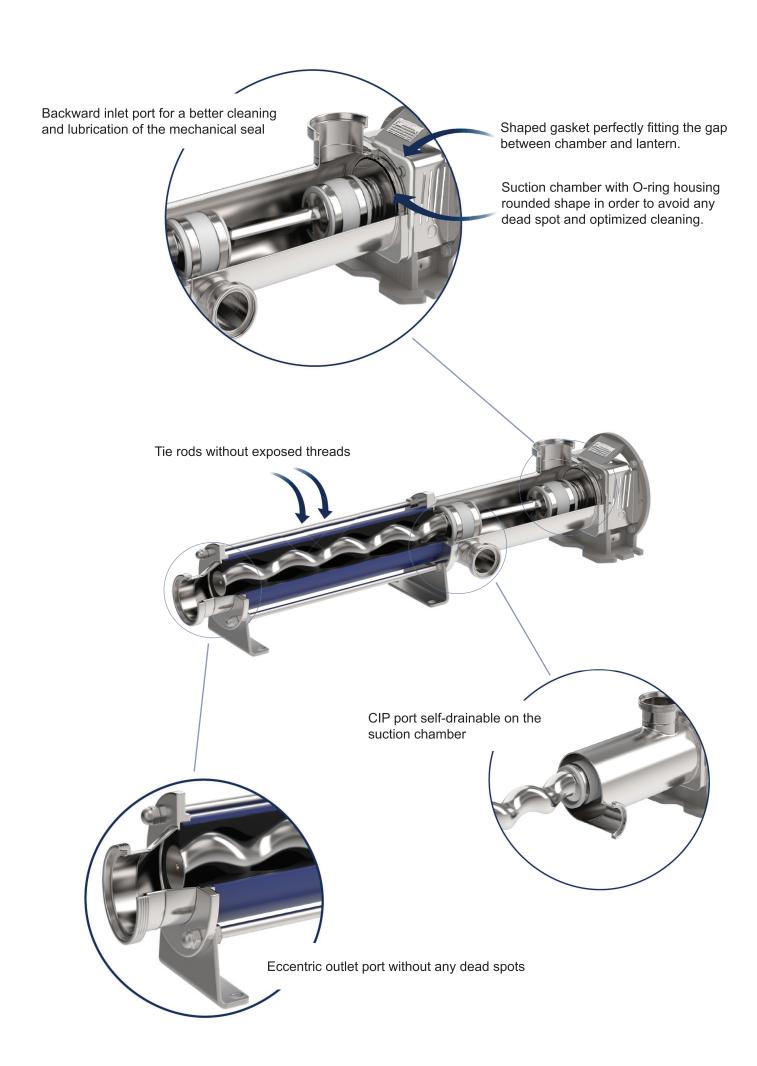
Dimensions not binding

Pump type	DN	D	E	F	F'	G	Н	H'	J	К	L	Ν	S
MAV 40-1	40	-	_	1103	-	126	70	-	79	1229	-	-	-
MAV 50-1	50	92	-	1086	-	198	100	-	86	1284	110	150	17
MAV 50-2	50	92	-	1236	-	198	100	-	86	1434	110	150	17
MAV 60-L	50	92	-	1255	1273	198	100	220	86	1453	110	150	17
MAV 65-1	65	111	_	1103	1142	226	130	220	113	1329	140	180	19
MAV 65-2	65	111	-	1303	1342	226	130	220	113	1529	140	180	19
MAV 70-L	65	111	-	1303	1342	226	130	220	113	1529	140	180	19
MAV 80-1	80	115	5	1104	1124	221	150	275	119,5	1325	150	190	19
MAV 80-2	80	115	5	1354	1374	221	150	255	119,5	1575	150	190	19
MAV 90-L	80	115	5	1243	1251	221	155	275	119,5	1644	150	190	19

Pump type	Α	B H7	С	U H7
MAV 40-1	20	8	=	19
MAV 50-1	25	10	10	24
MAV 50-2	25	10	10	24
MAV 60-L	25	10	10	24
MAV 65-1	25	14	10	32
MAV 65-2	25	14	10	32
MAV 70-L	25	14	10	32
MAV 80-1	26	16	10	35
MAV 80-2	26	16	10	35
MAV 90-L	26	16	10	35

Progressive Cavity Pumps

MH Hygienic Series



The new MH series self-priming progressive cavity pumps is composed of 5 sizes MH 55-65-80-100-125. All the wetted parts are made out of stainless steel AISI 316 polished with surface finishing of 0.8 micron; stator and all other gaskets can be of different materials. The renewed design makes these pumps without any dead spots and complying with all the applications with the highest hygienic requirements like food, pharmaceutical and cosmetics. The MH pumps are suitable to pump high viscosity media thanks to the delicate and constant flow and, on the biggest sizes, they are able to pump media with solid contents.

Numerous pumpable food products: creams, sauces, tomato concentrate, fruit purées, chocolate, pastry creams and batters, jams, ragout, yoghurt, melted cheese, beverages, concentrates, juices.

Available in sigle stage, double stage and long pitch design

Flow rate up to 60 m³/h Head values up to 12 bar Maximum suction pressure 12 bar Temperature range: -20°C to +100°C

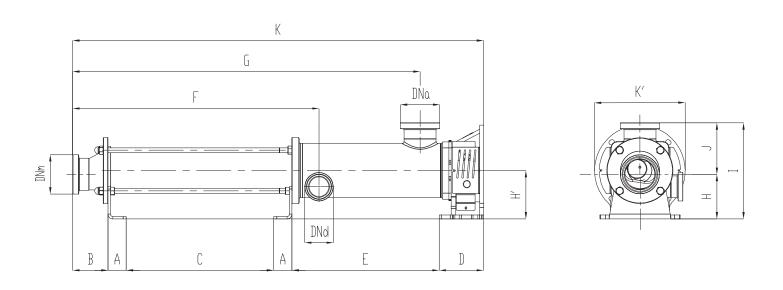
Seals:

Bi-directional mechanical seal with design created to facilitate cleaning.

Stator materials (elastomers compliant with reg. (EC) No. 1935/2004 and FDA regulation):

NBR black and white, EPDM, FKM rubber Fluoroelastomer.

Seal materials (elastomers compliant with reg. (EC) No. 1935/2004 and FDA regulation):


NBR (black and white) EPDM (black and white)

Fluorocarbon

Connections:

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN 16 flanges and, on request, available in compliance with international standards.

OVERALL DIMENSIONS

Dimensions not binding - DN = DIN 11851 female connection

Pump type	DNa	DNm	DNd	Α	В	С	D	E	F	G	Н	H'	к	K'	J	I
MHE 55-2	50	50	40	45	85	209	82	357	444	694	92	100	823	Ø200	94	186
MHE 65-2	65	65	50	50	96	295	102	344	561	786	116	125	937	Ø250	122	238
MHE 80-2	80	80	50	60	90	380	112	336	660	867	131,5	140	1038	Ø250	140,5	272
MHE 100-2	100	100	65	60	117	488	147	487	815	1149	147,5	160	1359	Ø300	170,5	318
MHE 125-2	100	100	65	70	172	662	172	585	1064	1508	152	180	1731	Ø350	202	354

Progressive Cavity Pumps

Standard design

The progressive cavity pump is a positive displacement pump with one single rotating shaft. A stainless steel rotor and a rubber stator are the main pumping components. The rotor is a circular section single screw. The rubber stator is vulcanized inside a steel pipe. Renowned for their versatility, different models are available in a choice of AISI 304, 316 stainless steel. Flow rates up to 200 m³/h, pressures up to 24 bar and temperatures up to 100 °C. Motorisation: direct motor, geared motor, variable speed motor, motor and pulley, gear motor with inverter.

MA series - Foodstuffs execution

Pumps for foodstuffs with a large suction chamber. Wetted parts are polished stainless steel with DIN threaded hygienic connections.

MI series - Industrial execution

Sturdy industrial pumps suitable for heavy duty requirements. Cast suction chamber and flanged connections.

MCRN series

The progressive cavity pumps can handle almost any kind of fluid up to 800.000 cps., including abrasive liquids and suspensions with solids. The pumping action is delicate, without sudden pulsation and the flow rate is proportional to the rotational speed.

MC series - Features a hopper and a pre-feeding screw

Version with a hopper equipped with pre-feeding auger screw suitable for viscous products that do not flow easily through pipes. The top part is equipped with a rectangular flange to which any type of conveyance system can be connected.

MCR series - Features a hopper, a pre-feeding screw and a vane crusher

Version with hopper, pre-feeding screw and vane crusher, suitable for dense products in lumps, pieces or that tend to form a bridge around a normal screw feeder. The vane crusher is driven by an independent geared motor, to crush the product to be pumped, breaking down any large lumps and pushing them into the pre-feeding screw.

MC2C series - Features an hopper and 2 pre-feeding

MC2CR series - Featuresanhopper,2pre-feedingscrewsand 1 blade feeder

Version with hopper and double synchronised pre-feeding screws, mounted below a vane crusher (vers. for MC2CR). The vane crusher blades chop the product and push it towards the bottom of the hopper. The two pre-feeding screws then push the product into to the pump stator.

Blade feeders with 2 pre-feeding screws

Version with hopper and double synchronised pre-feeding screw operated by a reduction unit.

It can be manufactured as a simple feeder or in combination with a lobe pump.

MAV series - Vertical execution

MAV Series pumps are intended for product transfer and drum or container emptying applications, in which the suction port is plunged directly into the product. As standard, MAV pumps have a suction to discharge port dimension of 1100 - 1400 mm. It can be mounted on a vertical trolley, with a choice of either a manual sliding or an alternative pneumatic lift and lower system.

Progressive cavity pump with crushing blades

STATOR MATERIALS

GA - NBR black

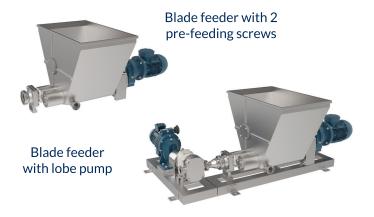
GB - EPDM

GD - FKM rubber Fluoroelastomer

GE - HYPALON rubber

GF - NBR white

GG - NATURAL rubber


GJ - HYDRO-TREATED NITR. rubber

GL - SBR SCA972

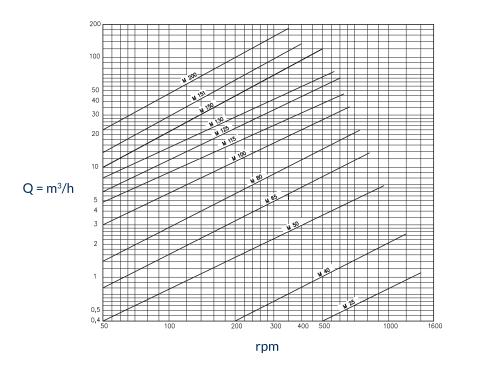
GM - EPDM (white rubber)

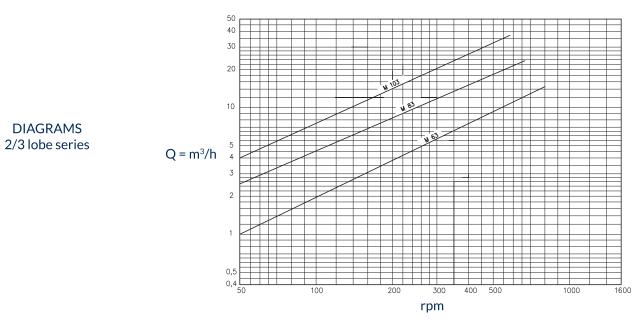
The right solution designed for crushing products containing soft or fibrous components (fruit and vegetables). The great advantage of this device is to avoid the need for macerating equipment after the pump.

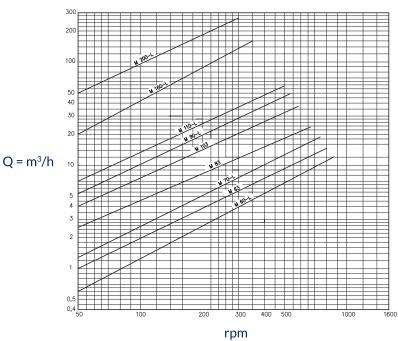
MOUNTING ARRANGEMENT

E VERSION

Close coupled with shaft directly coupled to the drive.


N VERSION


Double grease lubricated bearings for drive via a flexible coupling.


SEALS AVAILABLE

Single internal mechanical seal Single external mechanical seal Double flushed mechanical seal Cooled packed gland seal

DIAGRAMS 1/2 lobe series

DIAGRAMS long pitch series

The diagrams shows the theoretical flow rates at 0 pressure.

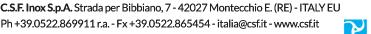
PROGRESSIVE CAVITY PUMPS FOR THE WINE INDUSTRY

PRESSING - TRANSFER OF PRESSED GRAPES, MASH, MUSTS AND WINE

FILLING AND EMPTYING OF BARRELS

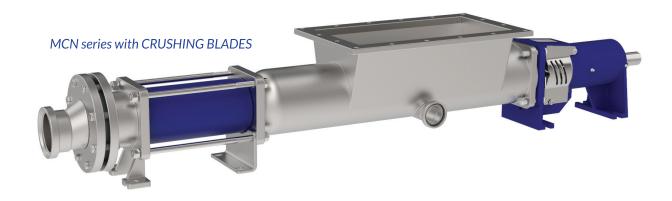
MAE series with electrical control panel for remote On/Off control from the stainless steel suction probes

RECIRCULATION - DECANTING


BOTTLING - FILTRATION - REFRIGERATION

Export Department • Commercial Étranger • Comercial Extranjero Ph+39.0522.869922 - Fx+39.0522.869841 - export@csf.it - www.csf.it

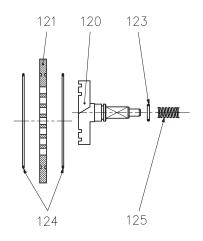
Progressive Cavity Pumps with Crushing Blades

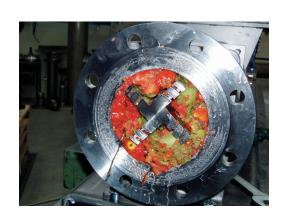


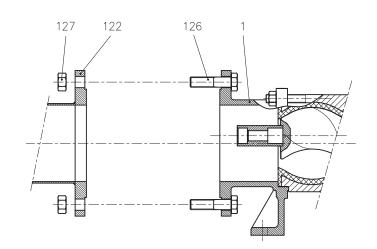
For crushing your products containing soft or fibrous components (fruit and/or vegetables), C.S.F. Inox has designed the right solution for you.

By using crushing blades mounted on the rotor with a disc having holes of different sizes, the consistency of the mashed product can vary.

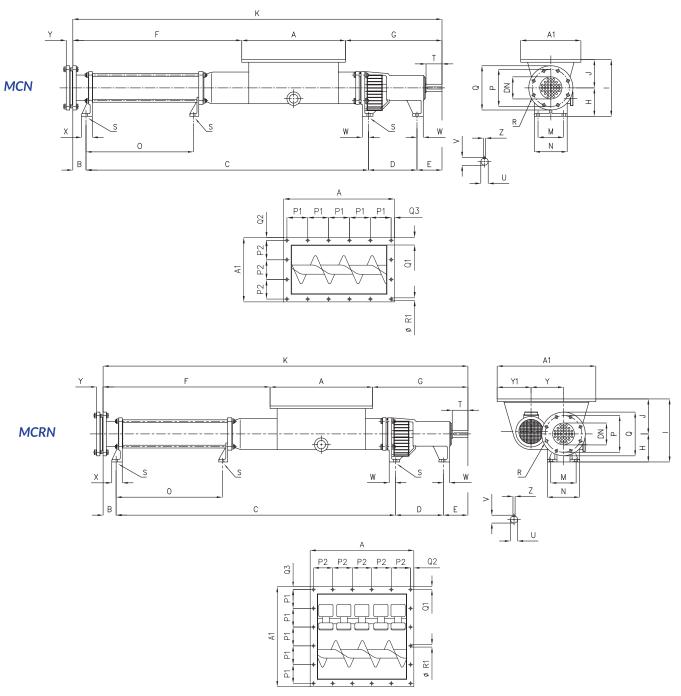
The great advantage of this device is to avoid the need for macerating equipment after the pump.



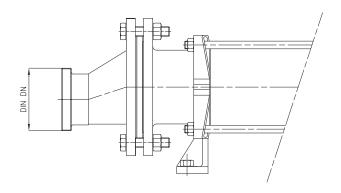

Available sizes: MC-MCR 80; MC-MCR 100; MC-MCR 125; MC-MCR 150.


Crushing blades kit

When necessary, you can easily equip the pump with the crushing blade kit, after having fixed a bush into the rotor head.



Pos.	Discharge port Denomination	Q.ty	CF8 Material
1	Dischause neut	1	CEO
120	Crushing blades	1	M 340
121	Perforated disc	1	M 340
122	Flange for crusher	1	AISI 304
123	O-ring	1	NBR
124	O-ring	2	NBR
125	Spring	1	AISI 316
126	Bolt	8	AISI 304
127	Nut	8	AISI 304


Overall dimensions

Dimensions not binding

PUMP MODEL	DIN DN	В	С	D	Е	F	G	К	Н	J	ı	М	N	0	DN	Р	Q	R	n° holes	S	т	U	٧	z	х	Υ	Y1	w
MCN80-2 MCRN80-2	80 80	51,5 51,5	1215 1215	222 222	124 124	750 750	416 416	1652 1652		140 180	280 320	115 115	155 155	458 458	100 100	180 180	220 220	18 18	8 8	14 14	75 75	35 35	38 38	10 10	39 39	35 160	<u>-</u> 228	34 34
MCN80-4 MCRN80-4	80 80	51,5 51,5	1737 1737	222 222	124 124	1272 1272	416 416	2174 2174		140 180	280 320	115 115	155 155	980 980	100 100	180 180	220 220	18 18	8 8	14 14	75 75	35 35	38 38	10 10	39 39	35 160	- 228	34 34
MCN 100-2 MCRN 100-2	100 100		1595,5 1595,5	l	141 141	954,5 954,5	545 545	2085,5 2085,5				1	185 185	606 606	125 125	210 210	250 250	18 18	8 8	18 18	90 90	42 42	45 45	12 12	60 60	37 185	- 195	35 35
MCN 100-4 MCRN 100-4	100 100		2224,5 2224,5	l		1583,5 1583,5	545 545	2714,5 2714,5		l .		1		1235 1235	125 125	210 210	250 250	18 18	8 8	18 18	90 90	42 42	45 45	12 12	60 60	37 185	<u>-</u> 195	35 35
MCN 125-2 MCRN 125-2	100 100		2059,5 2059,5	l	167 167	1243,5 1243,5	627,5 627,5	2627 2627		180 200	360 380	170 170		797,5 797,5	150 150	240 240	285 285	22 22	8 8	18 18	110 110	l	59 59	16 16	65 65	37 210	<u>-</u> 222	40 40
MCN 125-4 MCRN 125-4	100 100		2870,5 2870,5		167 167	2056 2056	627,5 627,5	3439,5 3439,5		l .		1		1608,5 1608,5		240 240	285 285	22 22	8 8	18 18	110 110		59 59	16 16	65 65	37 210	<u>-</u> 222	40 40
MCN 150-1S MCRN 150-1S		114 114	1894 1894	298 298	177 177	1073 1073	650 650	2480,5 2480,5		l .		200 200	250 250	519 519	200 200	295 295	340 340	22 22	8 8	22 22	110 110	l	59 59	16 16	90 90	42 262	- 266	50 50
MCN 150-2 MCRN 150-2		114 114	2394 2394	298 298	177 177	1573 1573	650 650	2980,5 2980,5		l .		1		1019 1019	200 200	295 295	340 340	22 22	8 8	22 22	110 110	l	59 59	16 16	90 90	42 262	<u>-</u> 266	50 50

DIN 11851 DISCHARGE PORT EXEC.

PUMP MODEL	Α	A1	P1	P2	Q1	Q2	Q3	R1	n° holes
MCN 80-2	486	326	113	146	43	17	17	13	12
MCRN 80-2	486	580	110	113	43	17	15	13	18
MCN 80-4	486	326	113	146	43	17	17	13	12
MCRN 80-4	486	580	110	113	43	17	15	13	18
MCN 100-2	586	340	110	103	43	15	18	13	16
MCRN 100-2	586	564	106	110	43	18	16	13	20
MCN 100-4	586	340	110	103	43	15	18	13	16
MCRN 100-4	586	564	106	110	43	18	16	13	20
MCN 125-2	756	420	102	96	53	18	21	18	22
MCRN 125-2	756	642	120	102	53	21	21	16	24
MCN 125-4	756	420	102	96	53	18	21	18	22
MCRN 125-4	756	642	120	102	53	21	21	16	24
MCN 150-1S	760	510	102	92	53	25	23	18	24
MCRN 150-1S	760	782	92	102	55	23	23	18	30
MCN 150-2	760	510	102	92	53	25	23	18	24
MCRN 150-2	760	782	92	102	55	23	23	18	30

Twin Screw Pumps

TS Series

Type of pump

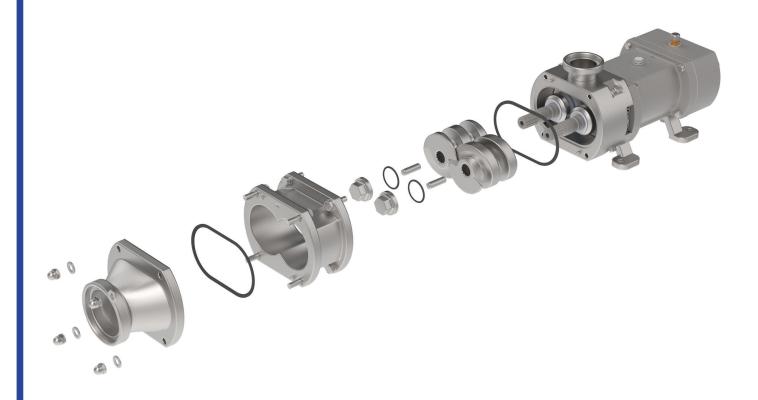
- Twin screw pump entirely made of stainless steel.
- Contact surfaces designed according to the latest design requirements regarding hygiene.
- Single or double flushed, balanced hygienic mechanical seals.
- Suitable for CIP cleaning and SIP sterilisation.

Advantages

- Suitable for non-viscous liquids and highly viscous fluids.
- Ideal pumping operation for delicate products, with suspending solids.
- Superb suction performance and suitable for high differential pressures.
- Reduced level of pulsations without generating foam, also with a high gas content.
- Compact size in relation to the supplied performance and high volumetric efficiency.
- No contamination of the pumped products and no shedding of material from wear parts.

Pumping applications

- Liquid food and beverages, dairy fluids, confectionery products, pharmaceutical and biotechnological fluids, cosmetics and fine chemicals.
- Fluids with suspended solids that must not be damaged.
- Fluids with suspended gas.


Typical products

- Food sector: fruit and vegetable juices purees and concentrates - beverages, also with suspended particles - syrups - spirits - chopped tomatoes chopped vegetables - fruit salads - thick soups and gastronomic preparations - chocolate and custards - ice creams.
- Dairy sector: milk cream soft cheeses yogurt curds ricotta
- Cosmetic and pharmaceutical sector: general pharmaceutical fluids - cosmetics - creams - gel and shampoos - detergents.

FEATURES

- All parts in product contact are made of AISI 316L with a surface finish less than 0.8 micron, designed according to the latest EHEDG hygiene requirements and approved to the US 3A sanitary standards.
- Support entirely made of AISI 304 stainless steel.
- Shaft synchronisation by means of optimised spiral profile toothed wheels.
- High resistance stainless steel shafts supported by oil bath bearings.
- Single or double flushed, balanced hygienic mechanical seals.
- Standard connections series DIN 11851/11864 and Clamp, SMS, RJT, flanges and special accessories on request.
- EPDM, FPM and HNBR gaskets compliant with EU Reg. 1935/2004 and FDA; other materials on request.
- Motor shaft with key for coupling with flexible coupling to the motor drive.
- Wide range of optional accessories available to meet all market requirements, such as surface hardening treatments, stainless steel base or carriage installation, version with hollow space, by-pass, flow or pressure sensors.

Available with different screw profiles to provide the best performance according to the type of installation.


- For high capacity
- For high pressure
- For delicate fluids with suspended solids

PERFORMANCE

Operating features with clean water at 20°C

Performance

- Capacity 0 20 m³/h TS65; 0 50 m³/h TS80; 0 150 m³/h TS100
- Differential pressure up to 20 bar
- Process temperature up to 140°C High temperatures are available on request
- Product viscosity up to 1.000.000 cP

MECHANICAL SEALS

The TS range twin screw pumps can be supplied with different shaft seals according to the application:

A - Single mechanical seal

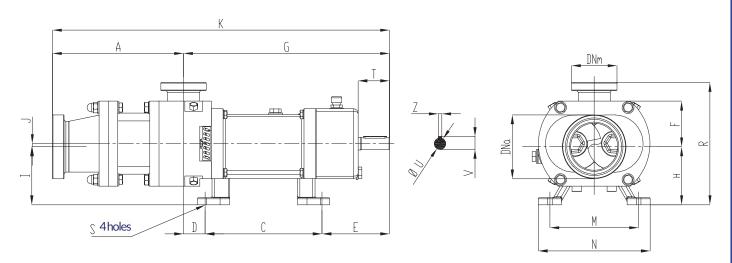
The single mechanical seal is a balanced hygienic cartridge type and is standard for low rotation speed applications and/or with non-viscous products.

MATERIALS:

- Silicon carbide / Silicon carbide
- Moulded gaskets in: EPDM, HNBR, FPM and, on request,

This execution can also be set up with an external cooling quench, using an optional radial seal ring.

B - Double flushed mechanical seal



The double mechanical seal is a balanced hygienic cartridge type. The ideal solution for all low speed applications with viscous process fluids and high rotational speed CIP processes.

MATERIALS:

- Silicon carbide / Silicon carbide
- Moulded gaskets in: EPDM, HNBR, FPM and, on request, **FFKM**

OVERALL DIMENSIONS

Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

Pumps	DNa	DNm	Α	С	D	Е	F	G	Н	I	J	К	М	N	R	S	Т	U	٧	Z
TS 65	80	65	225	201	37	116	115.5	354	109	103.5	5.5	579	152	192	219	11	54	20	22.5	6
TS 80	100	80	280	283	18	134	147	435	178	164	14	715	300	340	311	14	72	32	35	10
TS 100	125	100	395	308	43	221	199.5	572	192	164	27.5	967	300	340	364	14	129	45	48.5	14

Peripheral Impeller Pumps

CP Series

Standard design

Closed coupled single stage peripheral impeller pumps suitable for clean, non abrasive liquids without solids and viscosities up to max. 250 cP.

The special design of casing and impeller is suitable for duties with medium-high heads and low flow rates.

The pulsation-free flow is suitable for liquid dosing, laboratory micro installations, spraying and in-line measurement systems.

Wetted parts from AISI 316L (1.4404) stainless steel rolled bar, electro-chemically polished for a perfect surface finish.

A range of 2 models with flow rates up to 6 m³/h and heads of more than 100 m.

Maximum outlet pressure: 16 bar Temperature range: -10°C to 100°C Maximum rotation speed: 3500 rpm

CP pump with shroud and stainless steel adjustable feet

Pump with B34 motor

Peripheral impeller made from AISI 316L (1.4404) stainless steel rolled bar.

On request special anti-friction stainless alloy is available.

Seals:

Single mechanical seals with seats to EN 12756, ISO 3069 standards.

Elastomers:

EPDM Fluorocarbon Perfluoroelastomer P.T.F.E. (FEP) **FFPM**

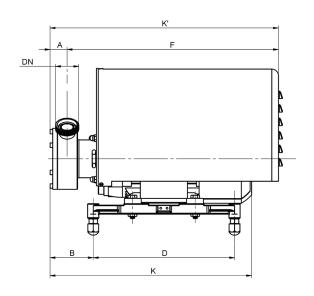
Connections:

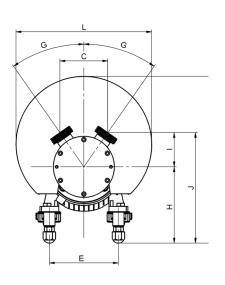
DIN - SMS - IDF - BS / RJT - DS - CLAMP. Other connections are available on request.

Applications:

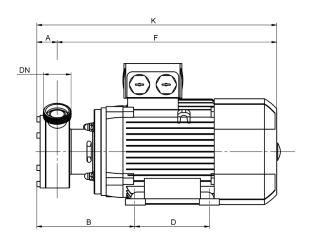
Food processing, dairy, beverage and syrups, oils, liqueurs and CIP duties.

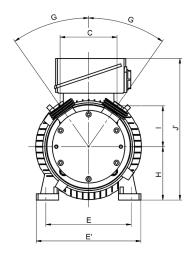
Chemical industry, acid and basic solutions. Cosmetic and pharmaceutical industry.


PERFORMANCE CURVES


giri/min		DN 15	DN 15		, 4, <u> </u>							4,5
2900/3500		Bocca aspir. Suction port	Bocca mand. Discharge port		δ. 4							3,5
п		Bocche tipo Ports type	DIN 11851 SPECIFICO 1 Kg/dn		е —						//	m m
15	Impeller	Ø n min. dic	APERTA 36 mm 74 mm mm DIN 11851 1	Q [m³/h]	2 2,5							2 2,5 D [m3/h]
CP	GIRANTE	ŭ.	74 mm N ACQUA PULITY O'F — Specific or		το.							5,1
		lle Pass. sferico	AZIONAMENTO COI		-	3500 rpm					3500 rpm	
POMPA TIPO Pump type		TIPO N° di pale Type n° of blades	APERTA 36 mm CARATTERISTICHE DI FUNZIONAMENTO CON AV CHANGS show performance with elean water at 70 °F.		000000000000000000000000000000000000000			30 - 2900 rpm	0 0 0	0 0 0	2,5 2 1,5 1,5 1 2900 rpm	0 0,5
POMPA Pump type		TIPO Type	APERTA CARATTERIST Curves show ne		Ō	80 70	[m]		v —	[m] HSdN	[dH] d	
giri/min	1	DN 25	DN 25		<u> </u>						y	
2900/3500 giri/min		Bocca aspir. DN 25	Socca mand. Discharge port		0							9
		Bocche tipo Bocca aspir. Ports type Suction port	Socca mand. Discharge port									9
2900/3500	Impeller	Ø min Bocche tipo Bocca aspir. min. diameter Ports type Suction port	Socca mand. Discharge port	Q [m³h]	5							4
n 2900/3500		Ø max Ø min. Bocche tipo Bocca aspir. max. diameter Ports type Suction port	80 mm mm DIN 11851 Bocca mand. CQUA PULITA A 20 °C − PESO SPECIFICO 1 Kg/dm³ Discharge port		(D							ro
25 n 2900/3500	Impeller	Pass. sferico Ø max Ø min. diameter Ø min. diameter Ports type Suction port	80 mm mm DIN 11851 Bocca mand. CQUA PULITA A 20 °C − PESO SPECIFICO 1 Kg/dm³ Discharge port		9 4 6	3500 rpm					3500 rpm	4
25 n 2900/3500	GIRANTE Impeller	Ø max Ø min. Bocche tipo Bocca aspir. max. diameter Ports type Suction port	CA 32 mm 80 mm mm DIN 11851 Discharge portasticle difference of account pulity a 20°C - PESO SPECIFICO 1 Kg/dm³		9 4 6			60 - 2900 rpm - 50 - 40 - 50 - 50 - 50 - 50 - 50 - 50		9		4

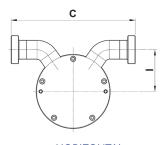
EXECUTION

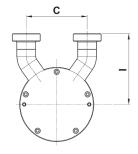

OVERALL DIMENSIONS



Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

Pumps	Motors Kw	DNa	DNm	Α	В	С	D	Ε	F	G	Н	К	K'	ı	J	J'	L
CP 15	1,1 1,5 2,2	15	15	32 107 90,5 270 140		400	35°	158	400	433	63,5	221,5	361	302,5			
CP 25	2,2	25	25	39	104,5 96	107	270 315	140 154	402 472		158 170	400 450	440 510	76	234 246	361 371	

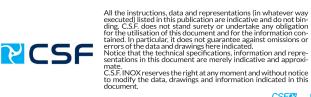



Dimensions not binding - DN = DIN 11851 male threaded connections with standard IEC/EN motors

Pumps	Motors Kw	DNa	DNm	Α	В	С	D	Е	E'	F	G	Н	К	ØR	I	J
CP 15	1,1 1,5 2,2	15	15	32	179	90,5	125	140	170	362	35°	90	395	10	63,5	218
CP 25	2,2	25	25	20	176	107	125	140	170	365	33		400	10	7/	246
CP 25	3 4	25	25	39	183,5	107	140	160	193	411		100	450	12	76	265

PORTS VERSIONS

Hoi	rizontal po	orts									
I C											
CP 15	60,5	157,5									
CP 25 72 202,2											



Ve	ertical por	ts										
I C												
CP 15	85,5	77,5										
CP 25	107	90,5										

C.S.F. Inox S.p.A. Strada per Bibbiano, 7 - 42027 Montecchio E. (RE) - ITALY EU

Positive Sinusoidal Displacement Pumps

SN Series

Positive displacement pumps with a sinusodial rotor.

- Gentle handling of the product thanks to the shape of the rotor and the working without any product slip and death zone.
- Very high efficiency.
- Excellent suction capability.
- Constant performance even with products having range of viscosities.

Flow rates from 0 to 100 m³/h Max. pressure 15 bar Suction capability up to 0,8 bar

ADVANTAGES

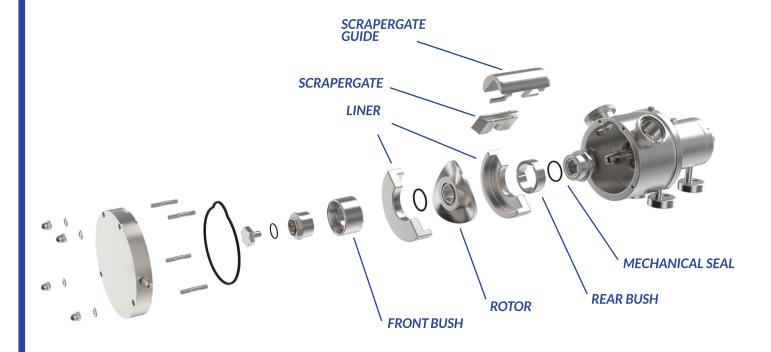
- Excellent suction capability continuously open inlet.
- Extremly gentle product transfer.
- No foaming of the pumped product.
- Compact design.
- Dry running is possible for a short period.
- Nearly all main wearing parts can be exchanged inline, without disconnecting the inlet and outlet pipes.

PRODUCTS

Low and high viscosity liquids; Cremes, Lotions, Products for the fine chemical and pharmaceutical industry, nearly all thin and thick liquid food products with or without particles. Products with a low abrasive content.

TYPICAL PUMPABLE PRODUCTS

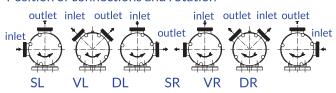
- Food industry: Juices, Fruit concentrates, Beverages, Syrups, Alcoholic beverages, Waters etc., Diced tomatoes, Cooked vegetables in pieces, Fruit salads, Soups and other food products, Delicatessen salads, Chocolate and Creams.
- Dairy industry: Processed cheese, Yoghurt, Whey, Ricotta Cheese, Cheese Curd of all kinds, Butter.
- Fine Chemicals and Cosmetics: Cosmetic products, Cremes, Gel, Shampoo, Toothpaste, Body lotions, Cleaning liquids, Paints and coatings.


CHARACTERISTIC

- Single mechanical seal with flush
- Pump in 316 stainless steel with internal front bush, liners and scrapergate made from polymers.
- O-rings in EPDM or FKM.

A wide choice of materials and motorization options to suit customers' application and product requirements.

All the materials are FDA certified.


Max particle size:

SN 65 : 18 mm SN 80 : 25 mm SN100:35 mm SN150:36/38 mm

Connections:

DIN - SMS - IDF - BS / RJT - DS - CLAMP and EN 1092-1 PN 16 flanges suitable for all international standards.

Position of connections and rotation

PERFORMANCES

SN 65-80-100 Series

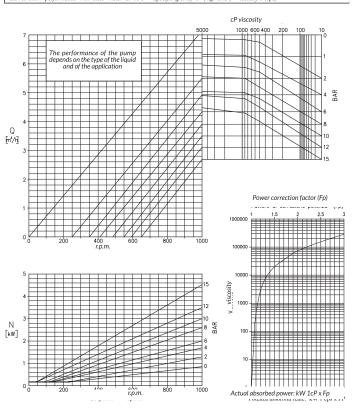
Flow rates from 0 to 36 m³/h. Max. pressure 15 bar. Suction capability up to 8 meters with wetted pump. Temperatures between -10° and +90°C. Max. product viscosity up to 1.000.000 CP.

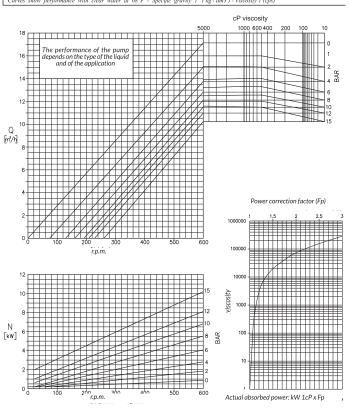
SN 150 Series

Flow rates from 0 to 100 m³/h. Max pressure 5 Bar. Suction capability up to 7 meters with wetted pump. Temperatures between -10° and +90°C. Max. product viscosity up to 500.000 CP.

SN 65 (2")1/2 PERFORMANCE CHART THEORETICAL VOLUMETRICAL PERFORMANCE Q= 0,11 L/REV

SN 80 (3") PERFORMANCE CHART THEORETICAL VOLUMETRICAL PERFORMANCE Q= 0,45 L/REV

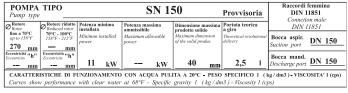

POMPA Pump type				SN 6			Raccordi DIN 1 Connetic	1851	
fine a 70°C up to 158°F 97,9 mm	Ø Rotore ridotto Reduced rotor 70°C - 100°C 158°F - 212°F mm	Potenza min installata Minimun inst power		Potenza massima ammissibile Maximum allowable power	Dimensione prodotto soli Maximum dim of the solid pro	do ension	Portata teorica a giro Theoretical revolutional delivery	DIN 1	
Eccentricità "h" Eccentricity mm	Eccentricità "h" Eccentricity mm		kW_	kW	18	mm	0,11 1	Bocca mand. Discharge port	DN 65

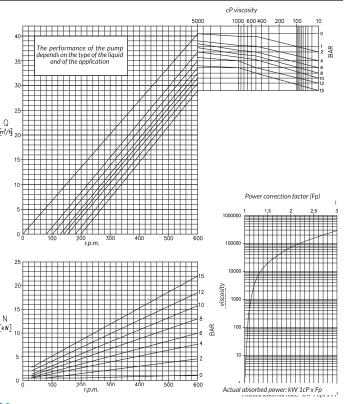

Pi	OMPA ump type	_					SN 8	0				DIN 1	
	Rotore Reduced roto			Potenza m installata	inima	Potenza ma ammissibile		Dimensione r	nassima	Portata teorica a giro		DIN I	
10	fino a 70°C 70°C - 100°C 158°F - 212°F 165 mm mr			Minimun in power	istalled	Maximum ai power		Maximum dime of the solid pro	ension	Theoretical revolution delivery	Bocca Suction	aspir.	DN 80
Eccer	ntricità "h" ntricity "mm	December)	"h" mm	1	kW		kW	25	mm	0,45 1	Bocca Discha	mand. rge port	DN 80

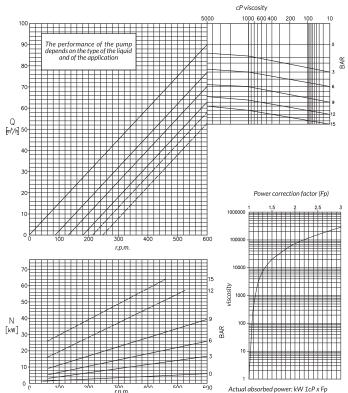
CARATTERISTICHE DI FUZZIONAMENTO CON ACQUA PULITA A 20°C - PESO SPECIFICO 1 (kg/dm3)-VISCOSITA'1 (eps)

Curves show performance with clear water at 68°F - Specific gravity 1 (kg/dm3)-Viscosity1 (cps)

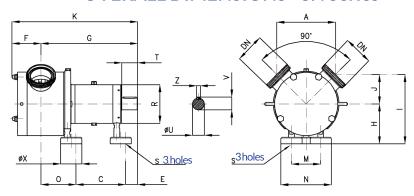
CARATTERISTICHE DI FUZIONAMENTO CON ACQUA PULITA A 20°C - PESO SPECIFICO 1 (kg/dm3) - VISCOSITA' 1 (cps)
Curves show performance with clear water at 68°F - Specific gravity 1 (kg/dm3) - Viscosity 1 (cps)

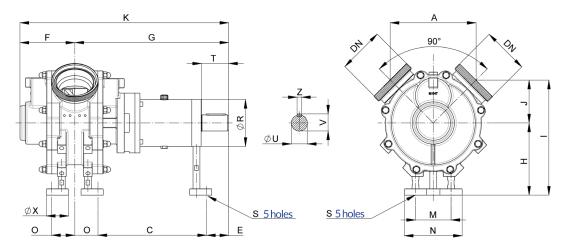





SN 100 (4") PERFORMANCE CHART THEORETICAL VOLUMETRICAL PERFORMANCE Q= 1,05 L/REV

SN 150 PERFORMANCE CHART FL. DN 150 THEORETICAL VOLUMETRICAL PERFORMANCE Q= 2,5 L/REV


POMPA Pump type			SN 10	00		Raccordi femmina DIN 11851 Connetion male							
Rotore Rotor fino a 70°C up to 158°F 218 mm	Ø Rotore ridotto Reduced rotor 70°C - 100°C 158°F - 212°F mm	Potenza minima installata Minimun installed power	Potenza massima ammissibile Maximum allowable power		Portata teorica a giro Theoretical revolutional delivery	DIN 11851							
Eccentricità "h"	Eccentricità "h" Eccentricity mm	1kw_	kW	35mm	1,05 1	Bocca mand. Discharge port DN 100							
	CARATTERISTICHE DI FUNZIONAMENTO CON ACQUA PULITA A 20°C - PESO SPECIFICO 1 (kg/dm3)-VISCOSITA'1(cps) Curves show performance with clear water at 68°F - Specific gravity 1 (kg/dm3) - Viscosity 1 (cps)												



OVERALL DIMENSIONS - SN Series

	Pump model			
	SN 65	SN 80	SN 100	SN 150
Α	150	221	263	348
С	117	186	247	439
E	37	45.5	69	90
F	81	109	132.5	222
G	251	363.5	463	623
Н	95	150	195	292
K	332	472.5	596.5	845
J	68	110.5	139	173
ı	163	260.5	334	465
М	56	110	160	144
N	106	190	240	234
0	97	132	147	94
R	100	145	190	190
S	12	16	16	21
Т	50	60	80	110
U	28	45	50	65
V	31	48.5	53.5	69
Χ	50	80	80	90
Z	8	14	14	18
DN DIN 11851	65	80	100	150
DN SMS	2"1/2	3"	4"	-
DN RJT	2"1/2	3"	4"	-
DN Clamp	2"1/2	3"	4"	-
DN Flange PN16	65	80	100	150
Weight	21,5	75,5	138	245

SN 150

DCATLSNGB 11/18

Drum Unloading Station

C.S.F. Inox S.p.a. offers a wide range of drum unloading stations for any production need. Versatile and flexible, this range features piston-type drum unloading machines available in various sizes and with varying equipment, made with top-quality electro-pneumatic components. The whole series is made with a fully AISI 304 stainless steel structure.

Numerous pumpable food products: creams, sauces, tomato concentrate, fruit purées, chocolate, pastry creams and batters, jams, ragout, yoghurt, melted cheese and beverages, such as syrups, glucose, concentrates, juices.

Can also be used in the cosmetic sector to pump products such as solutions, beauty creams and shaving creams.

DRUM UNLOA Wheel-mounted drums with dia Structure, des mersed and not Complete with ment. The machine For William Structure, des mersed and not Complete with ment. The machine

DRUM UNLOADING STATION FOR IMMERSED PUMP

Wheel-mounted pneumatic station suitable for emptying conical and cylindrical drums with diameter up to \emptyset 700 mm and height up to 1.000 mm.

Structure, designed for use with the long version piston pump, with the inlet immersed and no scraper plate. It is suitable for handling low viscosity liquids.

Complete with pneumatic control panel for quick and easy control of pump movement

The machine can be run by a single operator

SIZES

Four available sizes:

With PA65AM pump for flow rates up to 24 l/min.

With PA80AM pump for flow rates up to 33 l/min.

With PA100AM pump for flow rates up to 52 l/min.

With PA140AM pump for flow rates up to 100 l/min.

N.B.: Flow rates refer to products with a viscosity of 1.000 cP

OPTIONAL

- HCR (High corrosion resistance) pneumatic cylinder.

DRUM UNLOADING STATION WITH TURNTABLE

Pneumatic station with turntable, suitable for emptying four drums a with diameter up to \emptyset 700 mm and height up to 1.000 mm.

Structure designed for use with the long version piston pump, with immersed inlet.

The turntable installed at the base of the structure, can rotate 4 drums so that they can be positioned under the pump in quick succession. Complete with pneumatic control panel for quick and easy control of pump movement.

The machine can be run by a single operator

SIZES

Two available sizes:

With PA100AM pump for flow rates up to 52 l/min. With PA140AM pump for flow rates up to 95 l/min.

N.B.: Flow rates refer to products with a viscosity of 1.000 cP

OPTIONAL

- HCR (High corrosion resistance) pneumatic cylinder.

DRUM UNLOADING STATION WITH SCRAPER PLATE

Drum unloading station suitable for emptying conical and cylindrical drums with diameter up to \emptyset 700 mm and height up to 1.000 mm.

The machine cycles are managed by an electro-pneumatic panel with PLC.

The presence of electro-magnetic sensors guarantees the stop of the pump once the drum has been emptied and its return on top position.

The pump is equipped with a scraper plate to guarantee complete emptying of the drum.

The structure includes an adjustable drum-pump centring system.

Suitable for high viscosity products such as double-triple tomato concentrate and fruit purées.

The machine can be run by a single operator.

N.B.: Drums don't need any fixing system.

SIZES

Four available sizes:

With PA65AM pump for flow rates up to 24 l/min.

With PA80AM pump for flow rates up to 33 l/min.

With PA100AM pump for flow rates up to 52 l/min.

With PA140AM pump for flow rates up to 100 l/min.

N.B.: Flow rates refer to products with a viscosity of 1.000 cP

OPTIONAL

- HCR (High corrosion resistance) pneumatic cylinder.
- FDA Blu trace-free seal.
- Possibility to manage the emptying cycle in remote mode.

SMALL BUCKET UNLOADING STATION

Wheel-mounted pneumatic station suitable for handling small buckets.

The machine's work cycles are managed by an electro-pneumatic panel with PLC. The pump is equipped with a scraper plate to guarantee complete emptying of the bucket. The presence of electro-magnetic sensors guarantees the stop of the pump's stroke once the bucket has been emptied and its return on top position.

Ideal for high viscosity products such as chocolate, confectioner's creams, dairy products and jam.

Correct positioning of the bucket is guaranteed by a locking system incorporated in the structure.

Three available sizes:

With PA50AM pump for flow rates up to 10.6 l/min.

With PA65AM pump for flow rates up to 24 l/min.

With PA80AM pump for flow rates up to 33 l/min.

N.B.: Flow rates refer to products with a viscosity of 1.000 cP

OPTIONAL

- HCR (High corrosion resistance) pneumatic cylinder.
- FDA Blu seal.
- Possibility to manage the emptying cycle in remote mode.

DRUM UNLOADING STATION WITH DUAL-ARTICULATION ARM

Pneumatic station with dual-articulation arm suitable for conical and cylindrical drums up to \emptyset 700 mm and height up to 1.000 mm.

The machine's work cycles are managed by an electro-pneumatic panel with PLC.

The pump is equipped with a scraper plate to guarantee optimal emptying of the drum. The presence of electro-pneumatic sensors guarantees the stop of the pump's stroke once the drum has been emptied and its return on top position.

It can empty groups of 4 - 8 drums positioned on pallets.

The machine can be run by a single operator

Ideal for high viscosity products such as double-triple tomato concentrate and fruit purées.

N.B.: Drums don't need any fixing system.

8 DRUM EMPTYING SET-UP

SIZES

Three available sizes:

With PA80AM pump for flow rates up to 33 l/min. With PA100AM pump for flow rates up to 52 l/min. With PA140AM pump for flow rates up to 100 l/min.

N.B.: Flow rates refer to products with a viscosity of 1.000 cP

OPTIONAL

- HCR (High corrosion resistance) pneumatic cylinder.
- FDA Blu scraper plate gasket.
- Support base.

MIXING BOWL UNLOADING STATION

Vertical trolley designed for emptying mixing bowls with diameter up to

The machine's work cycles are managed by an electro-pneumatic panel with

The structure includes an adjustable bowl-pump centring system.

Piston pump fitted with a scraper plate shaped to the same geometry as the bottom of the bowl to ensure complete emptying.

The machine can be run by a single operator

The presence of electro-magnetic sensors guarantees the stop of the pump's stroke once the bowl has been emptied and its return on top position.

SIZES

Three available sizes:

With PA65AM pump for flow rates up to 24 I/min.

With PA80AM pump for flow rates up to 33 l/min.

With PA100AM pump for flow rates up to 52 l/min.

N.B.: Flow rates refer to products with a viscosity of 1.000 cP

OPTIONAL

- HCR (High corrosion resistance) pneumatic cylinder.
- FDA Blu scraper plate gasket.

Possibility to manage the emptying cycle in remote mode.

LARGE MIXING BOWL UNLOADING STATION

Structure designed for emptying mixing bowls with diameter exceeding Ø 700 mm.

The machine's work cycles are managed by an electro-pneumatic panel with

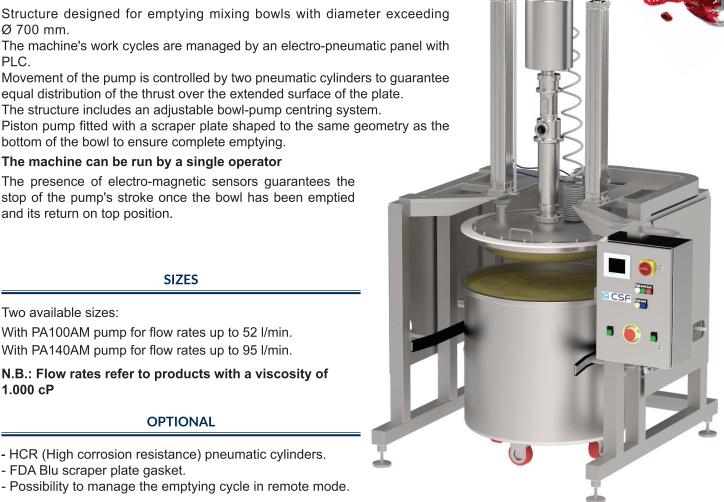
equal distribution of the thrust over the extended surface of the plate. The structure includes an adjustable bowl-pump centring system.

Piston pump fitted with a scraper plate shaped to the same geometry as the bottom of the bowl to ensure complete emptying.

The machine can be run by a single operator

The presence of electro-magnetic sensors guarantees the stop of the pump's stroke once the bowl has been emptied and its return on top position.

SIZES


Two available sizes:

With PA100AM pump for flow rates up to 52 l/min. With PA140AM pump for flow rates up to 95 l/min.

N.B.: Flow rates refer to products with a viscosity of 1.000 cP

OPTIONAL

- HCR (High corrosion resistance) pneumatic cylinders.
- FDA Blu scraper plate gasket.
- Possibility to manage the emptying cycle in remote mode.

FLOW TECHNOLOGY COMPONENTS

C.S.F. Inox S.p.A.

YOU&ME GLOBAL

경기도 용인시 기흥구 흥덕중앙로 120(흥덕U-TOWER), 2207호 **T** | 031.211.2990 **F** | 031.214.2991 **www.unmeglobal.co.kr**

cod. DCATG1GB ed. 01/19